Information theory: assignment 4

- 1. Let $S \subseteq \binom{[2n]}{n}$; that is, S is a collection of subsets of [2n], each of size n. Consider the following random variable T that takes values in [2n]. Choose X uniformly in S and choose T uniformly in X. Prove that for every $\varepsilon > 0$, there is $\delta > 0$ so that if $|S| > 2^{2n(1-\delta)}$ then the distribution of T is ε -close in statistical distance to the uniform distribution on [2n].
- 2. Let p_t be a probability distribution of a continuous time random walk on a finite *d*-regular graph G = (V, E). That is, let *L* be the Laplacian matrix of the graph defined by: for every $x, y \in V$,

$$L_{x,y} = \begin{cases} 1 & x = y \\ -\frac{1}{d} & \{x,y\} \in E \\ 0 & \text{otherwise} \end{cases}$$

Let p_0 be the initial distribution on V, and let

 $p_t = p_0 e^{-Lt}.$

Denote by u the uniform distribution on V. Denote by \mathcal{E} the *energy* operator, and denote by *Ent* the entropy operator; for functions $f, g: V \to \mathbb{R}_{>0}$, they are defined by

$$\mathcal{E}(f,g) = \mathbb{E}_{x \sim u} f(x)(Lg)(x)$$

and

$$Ent(f) = \mathbb{E}_{x \sim u} f(x) \log \frac{f(x)}{\mu},$$

where $\mu = \mathbb{E}_{x \sim u} f(x)$. Assume that a log-sobolev inequality holds: there is a constant $\rho > 0$ so that for all $f: V \to \mathbb{R}_{\geq 0}$,

$$\mathcal{E}(f,f) \ge \rho Ent(f^2)$$

- (a) Prove that for every $f: V \to \mathbb{R}_{\geq 0}$, it holds that $\mathcal{E}(f, \ln f) \geq 2\mathcal{E}(\sqrt{f}, \sqrt{f})$.
- (b) Prove that $u = ue^{-Lt}$ for all $t \ge 0$.
- (c) Define $h_t: V \to \mathbb{R}$ by $h_t(x) = \frac{p_t(x)}{u(x)}$. Compute $\frac{d}{dt}Ent(h_t)$.
- (d) Compute $\mu = \mathbb{E}_{x \sim u} h_t(x)$.
- (e) Prove that $Ent(h_t)$ tends exponentially fast to zero as $t \to \infty$. What does it say about the behavior of the random walk?
- 3. Let $q = q_1 \times q_2 \times \ldots \times q_n$ be a product distribution on $\{0, 1\}^n$. We have seen the sub-additivity of entropy. Prove the sub-additivity of variance: for every non-negative function f on $\{0, 1\}^n$,

$$V_{x \sim q}(f(x)) \leq \sum_{i=1}^{n} \mathbb{E}_{x_1 \sim q_1, \dots, x_{i-1} \sim q_{i-1}, x_{i+1} \sim q_{i+1}, \dots, x_n \sim q_n} V_{x_i \sim q_i}(f(x)),$$

where V stands for variance $(V(Y) = \mathbb{E}Y^2 - (\mathbb{E}Y)^2$ for a random variables Y).