
Information theory1

A course instructed by Amir Yehudayoff, Department of Mathematics, Technion-IIT

1An apology: this text probably contains errors.



2



Contents

1 Goals 5

2 Entropy 7

3 Applications 19

4 Shearer’s lemma 29

5 Mutual information 33

6 Harmonic functions 41

7 The second law of thermodynamics 47

8 Mutual information and sampling 51

9 Graph entropy 55

3



4 CONTENTS



Chapter 1

Goals

The course is an introduction for information theory and will focus on its applications in

mathematics.

Information theory started with the works of Shannon. Its high-level goal is to quantify

the amount of information that is conveyed in communication. But it has evolved and found

applications in many other areas:

• Communication: capacities of channels.

• Physics: thermodynamics.

• Computer science: communication complexity, data structures, etc.

• Economics.

• Mathematics: group theory, random walks, dynamical systems, geometry, etc.

They basic definitions follow from simple and natural “axiomatic” requirements. This yields

tools for analyzing complex systems.
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Chapter 2

Entropy

The first notion we discuss is entropy. It captures a fundamental and important idea. But

it takes some time to digest it.

2.1 A bit of history

It started in thermodynamics (physics). Joule (1840) studied systems focussing on pressure,

temperature, etc. Several “laws” were discovered, including the second law of thermodynam-

ics: the entropy in the system always increases. (More on this later on.) Later Bolzmann

(1880) and Gibbs gave statistical interpretation to this elusive notion. More recently Shan-

non (1950) studied communication, identified natural axioms for “entropy” and gave a formal

definition following the axioms (read his paper!).

2.2 The definition

We shall see many applications later on! But we start with the most basic definition, and

go relatively slow here.

What is a “system”? Think a cup of water, the sky, the stock market, etc.

What is the math model for it? The standard choice for a system is a probability

space. For most of the course, we shall deal with finite probability spaces. There is a

distribution p on [n] = {1, 2, . . . , n}. This is our “system”. The system takes finitely many

states (n), and state i is “seen” with probability p(i) ∈ [0, 1]. As all models, this is not a

perfect model. What are its pros and cons?

Goal. The goal is to assign a number to each system; this number should capture “the

amount of disorder in the system”. The larger it is, the less order there is. We want to
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define

H : all distribution→ R.

The term that was chosen for this H is entropy; this name was suggested to Shannon by

John von Neumann.

What are the properties of “disorder”? What should be the properties of the entropy

H?

1. Does not depend on ordering: for every distribution p on [n] and permutation π of [n],

H(p) = H(p ◦ π).

2. Continuous: H(p) is continuous function in p (what is the natural topology?). Make

this assumption for each n separately. That is, for every n and ε > 0, there is δ > 0 so

that if p, q are distribution on [n] so that ‖p − q‖1 ≤ δ then |H(p) − H(q)| < ε. (All

norms are equivalent here.)

3. Monotonicity: If Un is the uniform distribution on n, what should be the order on

H(U1), H(U2), . . .? The larger n is, the larger the entropy.

4. Splitting: for p = (p1, . . . , pn−1, pn) and pn = q1+q2 with q1, q2 ≥ 0, if p′ = (p1, . . . , pn−1, q1, q2)

then what should be H(p′)?

The choice that was made is

H(p′) = H(p) + pnH( q1
pn
, q2
pn

).

This corresponds to viewing the larger system p′ in two steps. First we view p. If the

value is less than n, then this is also the state of p′. If the value is n, then we view the

system ( q1
pn
, q2
pn

) to determine the state of p′. The chance of seeing n in p is pn.

5. Normalization:

H(U2) = 1.

This is “suitable for bits (binary digits)”.

Theorem 1. If H satisfies the above axioms then

H(p) =
∑
i

pi log( 1
pi

)

where log = log2 and 0 log(1
0
) = 0 (agrees with x log x→ 0 when x→ 0).

Claim 2 (warm up). H(1, 0) = 0.
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Proof. By splitting rule,

H(0.5, 0.5, 0) = H(0.5, 0.5) + 0.5H(1, 0).

By symmetry,

= H(0, 0.5, 0.5) = H(0, 1) +H(0.5, 0.5).

Corollary 3. H(p1, . . . , pn, 0) = H(p1, . . . , pn).

Proof. Exercise (now).

Claim 4. For m ≥ 1,

H(p1, . . . , pn−1, q1, . . . , qm) = H(p) + pnH( q1
pn
, . . . , qm

pn
),

where qj > 0 and
∑

j qj = pn.

Proof. By induction (left as an exercise).

Claim 5 (products). H(p× q) = H(p) +H(q).

Remark. This is a hint toward the general formula. Which functions f : R>0 → R satisfy

f(xy) = f(x) + f(y)? There are many such f ’s; all logb for b > 0. If we add normal-

ization f(2) = 1, does it help? No, we know nothing of f(3) for example. If we also add

monotonicity, then there is a unique function log2(x).

Here is a proof. First,

f(2k) == k.

What can we say about f(3)? We can write

f(3k) = kf(3).

Let k be large, and let ` be the smallest integer so that 2` ≤ mk;

` = bk log2(m)c.

By monotonicity,

f(2`) ≤ f(3k) ≤ f(2`+1)

so
`

k
≤ f(3) ≤ `+ 1

k
.

And for k tending to ∞, using sandwich,

f(3) = log2(3).

A similar argument hold for all x.
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Proof.

H(p× q) = H(p1q1, p1q2, . . . , pn−1qm, pnq1, . . . , pnqm)

= H(p1q1, p1q2, . . . , pn−1qm, pn) + pnH(q)

= pnH(q) +H(pn, p1q1, p1q2, . . . , pn−2qm, pn−1q1, . . . , pn−1qm)

= pnH(q) +H(pn, p1q1, p1q2, . . . , pn−2qm, pn−1) + pn−1H(q)

= . . .

= (p1 + p2 + . . .+ pn)H(q) +H(p).

Corollary 6. H(Unm) = H(Un) +H(Um).

Corollary 7. H(Un) = log2(n).

Proof. Similar to the discussion concerning f(n) = H(Un) above.

Proof of main formula. By continuity, assume that pi is rational. Write pi = qi
s

for qi, s

positive integers. By splitting and induction (similarly to product claim):

log2(s) = H(Us)

= H(p) +
∑
i

piH(Uqi)

= H(p) +
∑
i

pi log2(qi).

Remark. Axiomatic definitions are extremely powerful. For example, determinant has an

axiomatic definition and it is one of the most important functions in math.

Remark. Gromov found an axiomatic definition based on the product property

H(p× q) = H(p) +H(q).

But the notion of continuity (the underlying topology) is more complicated and we do not

discuss it in detail.

Remark. We can also write

H(p) = −EX∼p log p(X).

It is related to statistical physics in a way. Temperature is “average velocity” and entropy is

a different average.

Remark. There are other definitions of “entropy” that are useful in different contexts. The

formula we saw is known as Shannon’s entropy.
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2.3 Examples

A random coin. If X takes the value 1 w.p. p and 0 w.p. 1− p, then

H(X) = p log
1

p
+ (1− p) log

1

1− p
:= h(p)

is called the binary entropy function:

It is concave with maximum at one half. It is symmetric around p = 0.5. The property

h(0) = h(1) = 0 means that “no randomness means no entropy”. The most difficult thing is

to guess the output of a uniformly random coin. Around the maximum we have

h(1
2
− ε) ≈ 1− cε2.

Around the minimum:

h(ε) ≈ ε log 1
ε
;

specifically, the derivative at zero is ∞.

n-bits. If X is uniform on {0, 1}n then

H(X) = H(U2n) = n.

Intuitively, to describe X we need n bits. This is the first connection between entropy and

description length (more on this later on).

Three bits. If X ∈ {0, 1}3 is so that X1 +X2 +X3 = 0 mod 2 then

H(X) = 2

and

H(X1) = 1

and

H(X1, X2) = 2 = H(X).



12 CHAPTER 2. ENTROPY

If we known (X1, X2) then we know X. This is true also for 13 and for 23.

2.4 Convexity

The basic properties of entropy hold due to convexity. In fact, entropy can be thought of as

a clean and intuitive framework for using convexity.

Definition 8. A function f : Rn → R is convex if for every x ∈ Rn and p ∈ [0, 1],

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y).

Remark. In one-dimensional space this means that the function is “smiling”. In general,

the area above the graph of a convex function is convex.

Example 9. x2, ex,− log(x), x log(x) are convex. Pay attention to the domain of the func-

tion.

Lemma 10 (Jensen’s inequality). If f : R → R is convex and X is a real-valued random

variable then

f(EX) ≤ Ef(X).

Remark. A function f is concave if −f is convex. The function log(x) is concave.

2.5 Properties

Entropy has simple and intuitive properties. This makes it an extremely powerful tool for

counting.

Claim 11 (non-negative). For every random variables X,

H(X) ≥ 0.

Equality holds iff X is constant.

Proof. If p(x) > 0 then log 1
p(x)

> 0.

Claim 12 (uniform has most entropy). If X is a random variable taking values in [n] then

H(X) ≤ log n.

Equality holds iff X is uniform.
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Proof.

H(X) =
∑
x

p(x) log 1
p(x)

≤ log
(∑

x

p(x) 1
p(x)

)
= log n.

Equality holds iff 1
p(x)

= c because log is strictly concave. Because a probability distribution

sums to one, it follows that c = n.

The entropy of a system that is composed of two parts is at most the sum of the entropies

of the parts.

Claim 13 (subadditivity). If X, Y are two jointly distributed1 random variables then

H(X, Y ) ≤ H(X) +H(Y ).

Equality holds iff X, Y are independent.

Proof.

H(X, Y )−H(X)−H(Y ) =
∑
x,y

p(x, y)
(

log 1
p(x,y)

+ log p(x) + log p(y)
)

=
∑
x,y

p(x, y) log p(x)p(y)
p(x,y)

≤ log
(∑

x,y

p(x, y)p(x)p(y)
p(x,y)

)
= 0.

Equality holds iff p(x,y)
p(x)p(y)

= c. Because a probability distribution sums to one, it follows that

c = 1.

2.6 Encoding

The source of Shannon’s definition was communication. We now see that entropy is deeply

related to description length; H(X) is (almost) equal to the amount of bits that are typically

needs to describe X.

Definition 14. A prefix free encoding of [n] is a map E from [n] to the leaves of a rooted

binary tree. The size |E(i)| is defined to be the depth of E(i) in the tree.

Remark. Every leaf in a rooted binary tree corresponds to a word in {0, 1}∗ =
⋃
k{0, 1}k.

The size |E(i)| is the length of the word encoding i. A code is prefix free iff for every i 6= j

1We shall omit the “jointly distributed” part in the future.
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the words E(i), E(j) are not prefixes of each other. The prefix free condition says that we

can not confuse two encodings when we read them from left to write.

Theorem 15. Let X be a random variable taking values in [n].

1. There is a prefix free encoding E so that

E|E(X)| ≤ H(X) + 1.

2. If E is a prefix free encoding then

E|E(X)| ≥ H(X).

Remark. n has no real significance in the theorem.

Proof. Without loss of generality, assume that p(1) ≥ p(2) ≥ . . . ≥ p(n) > 0. Encode x ∈ [n]

with

`x = dlog 1
p(x)
e

bits as follows. Consider the full infinite binary tree. Choose a vertex v1 of depth `1, assign

it to be the encoding of 1, and remove all its children from the tree. Then, choose a vertex

v2 6= v1 of depth `2, and so forth.

Why can we continue until all of [n] is encoded? When we are about to assign vertex j,

we have deleted
∑

i<j 2`j−`i vertices from the 2`j vertices at depth `j. There are vertices left

because ∑
i<j

2`j−`i ≤ 2`j
∑
i<j

p(i) < 2`j .

We have thus found an encoding so that

E|E(X)| =
∑
x

p(x)|E(x)| ≤
∑
x

p(x)(log( 1
p(x)

) + 1) ≤ H(X) + 1.

It remains to prove the other direction. Let E be a prefix free encoding of [n]. Denote

by `x the encoding length of x ∈ [n].

We claim that ∑
x

2−`x ≤ 1.

Imagine a random walk on the tree that starts at the root and moves left or right uniformly.

It stops when it hits a leaf. The probability that it hits the leaf encoding x is 2−`x . Because

these event are disjoint the claim holds.

Now, write

E`X = H(X)−
∑
x

p(x) log
2−`x

p(x)
.
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Because log is concave and increasing,

∑
x

p(x) log
2−`x

p(x)
≤ log

(∑
x

p(x)
2−`x

p(x)

)
≤ 0.

Remark. This shows that deep connection between “disorder” and description length. They

are basically equivalent; a way to formally define “disorder” is as the cost of the best encoding.

Remark. This help to understand the formula for entropy. The number log 1
p(x)

is the

number of bits in the “optimal” encoding of x. It can be thought of as the “amount of

surprise when we see x”. The entropy is the expected amount of surprise.

2.7 An application

The application we consider is concentration of measure (Chernoff and related inequalities)

and estimation of binomial coefficients. Let X be uniformly distributed in {0, 1}n. Think

of X as a set as well. The size of X is sharply concentrated around n/2. It is typically

n/2 ± O(
√
n). This follows by Chebyshev’s inequality. The central limit theorem says

something stronger for n→∞. We want to obtain a concrete bound for finite n.

For ε > 0, what is

Pr[|X| ≤ (1
2
− ε)n] =?

In other words, what is the size of the set

S = {x ∈ {0, 1}n : |x| ≤ (1
2
− ε)n}?

It can be expressed as a sum of binomial coefficients. But this sum is too complicated for

applications.

Theorem 16.

Pr[|X| ≤ (1
2
− ε)n] ≤ 2(h(

1
2
−ε)−1)n ≤ e−2ε

2n,

where h(·) is the binary entropy function.

Remark. The second inequality holds by a Taylor expansion of h(·) around 1
2
:

h(1
2
− ε) ≤ 1− 2ε2 log e.

This is left as an exercise.

Remark. The probability for being more than (1
2

+ ε)n is the same.

Proof. Let X be uniformly distributed in the set S defined above. So,

H(X) = log |S|.
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By subadditivity and symmetry,

H(X) ≤
n∑
i=1

H(Xi) = nH(X1).

What is the distribution of X1? By linearity of expectation,

nPr[X1 = 1] = nEX1 = E|X| ≤ (1
2
− ε)n.

By monotonicity of the binary entropy function,

H(X1) ≤ h(1
2
− ε).

The probability is
|S|
2n
≤ 2nH(X1)−n.

Remark. For k ≤ n
2

we proved (
n

k

)
≤ 2nh(

k
n
).

This is a pretty good estimate; if α = k
n
∈ [0, 1] is fixed, and n is large, this upper bound is

essentially sharp and we shall discuss this later on.

Remark. There are other methods for proving concentration of measure. The standard

proof of Chernoff inequality looks at the exponential moment EetX and relies on Markov’s

inequality. The higher the moment we can estimate, the better the end result is (and the

exponential moment is “highest”). The parameter t is chosen to optimize the end result.

2.8 Conditional entropy

When we perform an experiment and have two possible observables X and Y , we can observe

X and ask how much entropy does Y still possess.

Definition 17. The conditional entropy is defined as

H(Y |X) = H(X, Y )−H(X).

Remark. The conditional entropy is the entropy of the whole system (X, Y ) minus the

entropy of the observed part X.

Remark. We have the following intuitive chain rule:

H(X, Y ) = H(X) +H(Y |X).

Notation 18. H(Y |X = x) =
∑

y p(y|x) log 1
p(y|x) .
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Remark. The expression H(Y |X) is a number while H(Y |X = x) is a random variable.

Remark. The conditional entropy is the average over x, of the entropy of Y conditioned on

the event X = x:

H(Y |X) =
∑
x

p(x)
∑
y

p(y|x) log 1
p(y|x) = ExH(Y |X = x).

Try to prove.

Remark. It follows that H(Y |X) ≥ 0, as the average of non-negative numbers.

Remark. H(Y |X) = H(Y ) iff X, Y are independent.

Remark. One of the most useful properties of entropy is the chain rule:

H(X1, X2, . . . , Xn) =
n∑
i=1

H(Xi|X<i),

where X<i = (X1, . . . , Xi−1).

Example 19. Let X, Y, Z ∈ {0, 1} be uniform conditioned on their XOR being zero:

H(X, Y, Z) = log 4 = 2

H(X) = 1

H(Y |X) = 1

H(Z|X, Y ) = 0.

Remark. A minor generalization: H(X1, X2, . . . , Xn|Y ) =
∑n

i=1H(Xi|X<i, Y ).

Remark. H(X|Y ) 6= H(Y |X) in general.

Claim 20 (conditioning reduces entropy). H(Y |X) ≤ H(Y ).

Proof. Subadditivity.

Remark. While H(Y |X) ≤ H(Y ), it is not necessarily true that for each x, we have

H(Y |X = x) ≤ H(Y ). E.g., if X, Y ∈ {0, 1} are uniform so that X + Y > 0, then

H(Y ) = h(2
3
) < 1

H(Y |X = 1) = h(1
2
) = 1

H(Y |X = 0) = 0.
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2.9 Entropy and predictions

We performed an experiment and saw Y . But our goal is to estimate an unknown X as

accurately as we possibly can. If X = f(Y ) then we can compute X exactly. Conditional

entropy allows to control the chance of a correct guess.

Theorem 21 (Fano). Let X, Y be random variables so that X takes values in [n]. Let g be

a function so that g(Y ) is a random variable. Let

pe = P[g(Y ) 6= X].

Then,

h(pe) + pe log n ≥ H(X|g(Y )) ≥ H(X|Y ).

(We already know the right inequality.)

Remark. The theorem says that if X has entropy conditioned on Y then we can not hope

to always guess it correctly.

Proof. Let E be the indicator random variable for the event g(Y ) = X.

H(E,X|g(Y )) = H(X|g(Y )) +H(E|X, g(Y )) = H(X|g(Y ))

H(E,X|g(Y )) = H(E|g(Y )) +H(X|E, g(Y )) ≤ H(E) + peH(X|E = 1, g(Y )).



Chapter 3

Applications

3.1 Data processing

Assume that a system produced outcome X, and that this outcome was processed to f(X).

What is the relation between H(X) and H(f(X))?

Exercise 22 (data processing i). H(X) ≥ H(f(X)).

Proof.

H(X, f(X)) = H(X) +H(f(X)|X) = H(X)

H(X, f(X)) = H(f(X)) +H(X|f(X)) ≥ H(f(X)).

Remark. This can be proved in a “straightforward” way, but conditioning makes the proof

cleaner.

Exercise 23 (data processing ii). H(X|Y ) ≤ H(X|f(Y )).

Proof.

H(X, f(Y ), Y ) = H(Y ) +H(X|Y ) +H(f(Y )|Y,X)

= H(Y ) +H(X|Y ) +H(f(Y )|Y )

= H(Y, f(Y )) +H(X|Y )

H(X, f(Y ), Y ) = H(f(Y )) +H(X, Y |f(Y ))

≤ H(f(Y )) +H(X|f(Y )) +H(Y |f(Y ))

= H(Y, f(Y )) +H(X|f(Y ));

the inequality is sub-additivity.

19
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3.2 Cauchy-Schwarz

We prove the well-known

∑
i

uivi ≤
∑
i

|ui||vi| ≤
√∑

i

u2i ·
∑
j

v2j .

This is an important inequality in linear algebra, geometry and has many applications in

most areas in math.

Theorem 24. If u1, . . . , un and v1, . . . , vn are positive integers then

∑
i

uivi ≤
√∑

i

u2i ·
∑
j

v2j .

Equality holds iff v = cu for some c > 0.

Remark. The theorem implies the same statement for the rationals, and by continuity for

the reals.

Remark. This is perhaps to most complicated proof of this inequality. But it’s a good

exercise.

Proof. Let A1, . . . , An be pairwise disjoint subsets of N where |Ai| = ui. Let B1, . . . , Bn

be pairwise disjoint subsets of N where |Bi| = vi. Choose X = (X1, X2) and Y = (Y1, Y2)

uniformly and independently in
⋃
iAi ×Bi.

2 log
(∑

i

uivi

)
= H(X, Y ).

This is the l.h.s. that we are interested in. The goal is to reach the r.h.s. Let I be the unique

index so that X ∈ AI × BI . Let J be the unique index so that Y ∈ AJ × BJ . Let X ′1 be

uniform in AI , and let Y ′2 be uniform in BJ . Some observations:

• The indices I, J are identically distributed.

• The distribution of X1 conditioned on I = 1 is the same as the distribution of Y1
conditioned on J = 1.

• Conditioned on I, the random variables X1 and X2 are independent.

• The distribution of (Y1, J) is identical to that of (X ′1, I), and similarly for (X2, I) and

(Y ′2 , J).
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H(X, Y )

= H(X, Y, I, J)

= H(I) +H(X1|I) +H(X2|X1, I) +H(J) +H(Y1|J) +H(Y2|Y1, I)

= H(I) +H(X1|I) +H(X2|I) +H(J) +H(Y1|J) +H(Y2|J)

= H(I) +H(X1|I) +H(Y ′2 |J) +H(J) +H(X ′1|I) +H(Y2|J)

= H(X1, X
′
1) +H(Y2, Y

′
2)

≤ log
(∑

i

u2i

)
+ log

(∑
j

v2j

)
.

The only inequality is the last step. There is equality iff (X1, Y
′
1) is uniform on its support

iff for all i,

Pr[I = i] =
u2i∑
j u

2
j

;

the r.h.s. is the only distribution on I that yield the uniform distribution on (X1, Y
′
1) iff there

is c > 0 so that uivi = cu2i for all i iff v = cu.

Remark. The equality case holds also if u, v are not positive, because if uivi < 0 for some i

then there is inequality.

3.3 Counting perfect matchings

Here is an application is combinatorics. Let G = (A ∪ B,E) be a bipartite graph with

|A| = |B| = n.

Definition 25. A perfect matching in G is a collection of n disjoint edges.

Remark. A perfect matching defines a bijection between A and B.

Remark. The problem of deciding if G has a perfect matching can be solved in polynomial

time (and is important; discuss examples).

Definition 26. Let M be the adjacency matrix of G; that is, Ma,b = 1 iff {a, b} ∈ E. The

permanent of M is

perm(M) =
∑
σ

∏
a

Ma,σ(a)

where σ is a bijection from A to B.

Remark. It is like determinant but with no signs.

Claim 27. perm(M) is the number of perfect matchings in G.

Remark. Computing perm(M) is believed to be difficult (it is #P-complete; harder than

NP). This is in contrast to deciding if perm(M) > 0, which is in P.
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Exercise 28. perm(M) ≤
∏

a da, where da is the degree of a ∈ A.

Theorem 29 (Bregman). perm(M) ≤
∏

a(da!)
1/da.

Remark. The theorem is sharp for the complete bipartite graph with n! matchings, or for a

disjoint union of such graphs.

Proof by Radhakrishnan. Let A = [n]. Let ρ be a uniformly random matching in G (if there

are no matchings, the theorem is trivial). Denote by ρ(a) ∈ B the neighbor of a with respect

to µ. The “simple” bound:

log perm(M) = H(ρ) ≤
∑
a

H(ρ(a)) ≤
∑
a

log da.

To get a more accurate bound, use the chain rule:

H(ρ) =
n∑
a=1

H(ρ(a)|ρ(1), . . . , ρ(a− 1)).

What is the correct way to order A? Not so clear. Choose a random order. Let π be a

uniform permutation of A.

log(perm(M)) = H(ρ) = Eπ
n∑
a=1

H(ρ(π(a))|ρ(π(1)), . . . , ρ(π(a− 1))).

For a ∈ [n], let k = ka be defined by k = π−1(a) or a = π(k); in other words, a is the k’th

element in the sum for this π. Collect terms as

H(ρ) =
n∑
a=1

EπH(ρ(a)|ρ(π(1)), . . . , ρ(π(k − 1))).

Now, fix a and focus on

EπH(ρ(a)|ρ(π(1)), . . . , ρ(π(k − 1))).

For each π, the conditional entropy is at most log of the number of “free” neighbors of a. That

is, if we denote by F = F (π, ρ, a) the number of neighbors of a that are not in ρ(π([k− 1])),

then

EπH(ρ(a)|ρ(π(1)), . . . , ρ(π(k − 1))) ≤
da∑
j=1

Pr[F = j] log j.

The last step is proving that

Pr[F = j] =
1

da
.
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Write

Pr[F = j] = Eρ Pr[F = j|ρ].

For fixed ρ, each neighbor b of a is matched to ρ−1(b). The value of F is the number

of neighbors b of a so that ρ−1(b) is at least a in the ordered defined by π. Because π is

uniform, the number of elements of ρ−1(N(a)) that are at least a with respect to π is uniform

in [da].

3.4 The local lemma

The probabilistic method (initiated by Erdös) tells us that if we want to prove that some

object x exists then we can find a random variable X and prove that Pr[X = x] > 0. This

simple idea is extremely powerful.

Remark. One of the central goals is to find explicit good objects. The probabilistic method

typically does not provide constructions.

A typical proof using this method shows that Pr[X = x] is very close to 1. In other

words, that most objects are “good”. The local lemma is one of the few methods that gives

only Pr[X = x] > 0.

Lemma 30 (Lovasz’s local lemma). Let A1, . . . , An be events (think of them as “bad”).

Define a “dependency” graph G as follows. The vertices are [n]. There is an edge between i

and j iff Ai and Aj are not independent. Assume that

• all degrees in the graph are at most d,

• there is p > 0 so that Pr[Ai] ≤ p for all i, and

• ep(d+ 1) ≤ 1.

Then,

Pr
[⋂

i

Aci

]
> 0.

(There is something “good”.)

Remark. There are three assumptions. The first is that there isn’t much “dependency”

between the events. The second is that each individual bad event is not likely. The third

quantitively relates between the first two.

Theorem 31 (Moser). Under the same assumptions, an x ∈
⋂
iA

c
i can be found efficiently.

Remark. We won’t prove general statement, and focus on CNF formulas.
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Consider the formula

f = C1 ∧ C2 ∧ . . . ∧ Cs,

where each clause Ci is of the form

Ci = `i,1 ∨ `i,2 ∨ . . . ∨ `i,k,

where each literal `i,j is a variable or its negation.

Remark. Finding x so that f(x) = 1 is a constraint satisfaction problem. There is a list

of constraints defined by the clauses, and we need to satisfy all of them (or as many as we

can). It is NP-hard in general.

Definition 32. For each i ∈ [s], let Γ(i) be the set of j ∈ [s] so that Ci and Cj share a

variable (so that i ∈ Γ(i)).

Claim 33. If for all i,

|Γ(i)| ≤ 2k−3

then there is x so that f(x) = 1.

Remark. Comparison to the local lemma:

1. The bad events are Ai = {x : Ci(x) = 0}. If X is uniformly random then for all i,

Pr[Ai] = 2−k.

2. The set Γ(i) describes the clauses that are “not independent of Ci”. The assumption

in the claim implies that for all i,

|Γ(i)|2−k ≤ 1

8
.

Remark. The number of variables n does not really matter.

Proof of claim. We shall construct “better and better” assignments to f . The basic building

block is the following procedure FIX(Ci):

1. Choose k random bits and substitute them into Ci.

2. Go over all j ∈ Γ(i) so that Cj is not satisfied (after the new assignment), and run

FIX(Cj).

The algorithm is simple:

Start with a uniformly random assignments X0, and as long as there is an un-

satisfied Ci, run FIX(Ci).
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Remark. It is not clear that the algorithm terminates.

Remark. If the algorithm terminates then we found a satisfying assignment.

The argument proceeds by keeping track of two lists.

indices of FIX changes

X0

i1 R1

i2 R2

. . . . . .

it Rt

Xt

where the ij’s are the names of the clauses FIX was applied on, X0 is the initial assignment,

Rj ∈ {0, 1}k is the k random bits that were chosen in FIX, and Xt is the assignment after

running FIX for t times.

Claim 34. If we know i1, i2, . . . , it, Xt then we know X0, R1, R2, . . . , Rt.

Proof. Let’s see what happens for t = 1. If we know i1, X1, then in the positions outside Ci1
we know that X0 and X1 agree. In the positions inside Ci1 , we know X0 because there is a

single unsatisfying assignment. The positions inside Ci1 of X1 are R1. The rest is similar.

Claim 35. For every t, we can encode i1, . . . , it, Xt using at most

n+ t(k − 3) + 2t+ sdlog(s)e

bits.

Proof. The algorithm run can be described using a tree; for example,

•

in

\ 17
,

%
"

,

" '

b
, o

\ \ is1 !
,is it ig in in

This example can be encoded by

i1, 1, i2, 1, i3, 0, i4, 0, i5, 0, 0, i6, 1, i7, 0, i8, 0, 0, 0, i9, . . .

where 1 indicates “go down” and 0 indicates “go up”. The important facts are:
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1. When we go down we can describe the next ij using k − 3 bits, because there are at

most 2k−3 options.

2. The number of “direction bits” after t steps is at most 2t.

3. There are the “roots” of the trees. No root appears twice, because when a tree is

“completed” all relevant clauses are satisfied. Each root can be described using dlog s+

1e bits.

We are almost done. If the algorithm runs t steps then

n+ kt = H(X0, R1, . . . , Rt) ≤ H(i1, . . . , it, Xt) ≤ n+ t(k − 3) + 2t+ sdlog(s+ 1)e

so that

t ≤ sdlog(s+ 1)e.

Remark. What have we proved?

Exercise 36. Describe a (probabilistic) algorithm that gets as input a k-CNF formula f =∧
i∈[s]Ci so that |Γ(Ci)| ≤ 2k−3 for all i. The algorithm should output, with probability at least

2/3, a satisfying assignment to f . Explain how to change the algorithm to get probability of

success at least 1− δ for a given δ > 0. How does this affect the running time?

Remark. The proof uses the formula f to compress information. The data X0, R1, . . . , Rt

is just a sequence of n + kt uniformly random bits. We saw that there is a (deterministic)

procedure that uses f to encode this data using s log s+n+ (k− 1)t bits. This is so amazing

that it can’t be true. This can happen only for a short amount of time, only as long as

f(Xt) = 0.

Remark. We can “generically” amplify the success probability. If we have running time T

with success probability 2
3
, then we can get running time O(T log 1

δ
) with success probability

1 − δ. We just run the algorithm O(log 1
δ
) times, and see if one of the runs generated x so

that f(x) = 1. But in some cases we can do better, we can obtain running time of the form

T + O(log 1
δ
). This is not generic, but it works if we have “additional structure”. In this

case, we have this additional structure.

3.5 Isoperimetry

In Euclidean space, the shape that minimizes surface area for fixed volume is a ball. Physics

tells us that this is the reason that soap bubbles are round. A similar question can be asked
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in any space where volume and surface area are defined. A central example of such spaces

are finite graphs.

The Boolean cube is a central graph in math and CS. Its vertices are the element of

V = {0, 1}n. Two vertices are connected by an edge if they differ in a single coordinate.

There are 2n vertices and n2n−1 edges. The volume of A ⊆ V is its size. The surface area

is measured by the number δ(A) of edges between A and V \A. The isoperimetric problem

is to determine min δ(A) for fixed |A|. It was solved by Harper in 1966, but we shall see a

proof by Samorodnitsky from 2017.

Theorem 37. δ(A) ≥ |A|(n− log |A|).

Remark. If |A| = 2k then this is sharp for a subcube A of dimension k.

Proof. Let δ = δ(A) and let e be the number of edges whose two end-points are in A. Because

the cube is n-regular,

δ = n|A| − 2e.

We shall prove an upper bound on e.

Let X be uniform in A. For x ∈ {0, 1}n and i ∈ [n], let x−i ∈ {0, 1}n−1 be x after

deleting the i’th coordinate. The main observation is that for all i and x ∈ {0, 1}n so that

Pr[X = x] > 0,

H(Xi|X−i = x−i) =

{
1 both x and the i’th neighbor of x are in A,

0 otherwise.

It follows that ∑
i

H(Xi|X−i) =
∑
i

1

|A|
∑
x∈A

H(Xi|X−i = x−i)

=
1

|A|
∑
x∈A

∑
i

H(Xi|X−i = x−i)

=
1

|A|
2e.

Finally,

log |A| = H(X)

=
∑
i

H(Xi|X<i)

≥
∑
i

H(Xi|X−i)

=
1

|A|
2e.
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Chapter 4

Shearer’s lemma

Shearer found a useful generalization of sub-additivity. It allows to control entropy under

projections.

Remark. Sub-additivity can be stated as follows. If I is uniform in [n] and independent of

X then
1
n
H(X) ≤ EIH(XI).

If X has a lot of entropy, then a random coordinate has entropy.

Notation 38. Let X = (X1, . . . , Xn) be a random variable. For S ⊆ [n], let XS = (Xi : i ∈
S). For i ∈ [n], let X<i = X[i−1].

Theorem 39. If S is a random subset of [n] distributed independently of X so that for each

i ∈ [n], we have Pr[i ∈ S] ≥ µ then

ESH(XS) ≥ µH(X).

Proof by Radhakrishnan. For each s = {s1 < s2 < . . . < sk},

H(Xs) = H(Xs1) +H(Xs2|Xs1) +H(Xs3|Xs1 , Xs2) + . . .

≥ H(Xs1 |X<s1) +H(Xs2|X<s2) +H(Xs3|X<s3) . . .

=
∑
i∈[n]

1i∈SH(Xi|X<i).

29
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In expectation,

ESH(XS) ≥ ES
∑
i∈[n]

1i∈SH(Xi|X<i)

=
∑
i∈[n]

ES1i∈SH(Xi|X<i)

=
∑
i∈[n]

H(Xi|X<i)ES1i∈S

≥
∑
i∈[n]

H(Xi|X<i)µ

= µH(X).

4.1 Application: Loomis-Whitney

Let A be a compact subset in Euclidean space Rd. We can try to understand properties of

A by looking at its projections on lower dimensional spaces. Let’s focus on d = 3 for now.

If we project A to the three main axis, and we see lengths λ1, λ2, λ3, then what can we

say on the volume of A? It is at most

|A| ≤ λ1λ2λ3

because A is contained in the “box” defined by the projections.

If we project A to the three main planes, and we see areas α12, α13, α23, then what can

we say on the volume of A? This seems much more complicated; instead of a box we get a

cylinder intersection. Now we can bound

|A|2 ≤ α12α13α23.

Remark. Such an inequality must be homogeneous.

Loomis and Whitney proved this inequality for general d. Let’s use Shearer lemma to

prove that.

Theorem 40. If A is a finite subset of Zd and πi(A) is the projection of A to the coordinates

not in i ∈ [d], then

|A|d−1 ≤
∏
i

|πi(A)|.

Remark. This is a discrete statement but it implies the continuous statement by approxi-

mation.

Proof. Let X be uniformly random in A so that

log |A| = H(X).
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Let I be uniform in [d] of size d − 1 chosen independently of X. For each j ∈ [d], we have

Pr[j ∈ [d] \ {I}] = d−1
d

. By Shearer’s lemma,

d−1
d
H(X) ≤ EIH(X[d]\{I})

≤ EI log |πI(A)|.

Remark. The only case of equality is that X[d]\{i} is uniform on its support which means

that A is a cube.

Exercise 41. Prove that now.

Remark. We can ask for a stable version of this inequality; if A is so that the inequality is

close to being satisfied does it mean that A is close to a box? Together with Ellis, Friedgut

and Kindler, we proved that. For every d, there is c > 0 so that for every finite A ⊂ Zd and

every ε > 0, if

|A| ≥ (1− ε)
∏
i

|πi(A)|
1
d−1

then there is a box B ⊂ Zd so that

|A4B| ≤ cε|B|.

You can try to think how to find this box.

Remark. The Loomis-Whitney inequality depends on the coordinate system we use. If we

rotate the body, the volume is fixed but the projections may change. The equality case is

achieve by an axis-oriented box. Imagine that we have a fixed body, and we randomly rotate

it and then apply the d projections. Can we get a better bound on the volume? Together

with Milman, we showed that we can (using Petty’s inequality). This inequality turns out to

be stronger than the classical isoperimetric inequality, and the equality case is achieved by a

ball.
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Chapter 5

Mutual information

Entropy measures the amount of unpredictability of a system. The goal now is to measure

the mutual information between two parts X and Y of the system. Mutual information is

defined via entropy. It is the difference between the entropy of X and the entropy of X when

we know Y .

Definition 42. The mutual information between X and Y is

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X, Y ).

Example 43. I(X;X) = H(X).

Example 44. I(X;Y ) = 0 iff X, Y are independent.

5.1 Data processing

If X → Y → Z is a Markov chain (i.e., conditioned on Y , the two variable X,Z are

independent) then what’s the connection between I(X;Y ) and I(X;Z)?

Remark. We can think of Z as a processing of Y that may involve some extra randomness

(that is independent of X).

Remark. The Markovian property appears in many systems in physics. Examples?

Claim 45. If X → Y → Z then

I(X;Y ) ≥ I(X;Z).

Proof.

I(X;Z) = H(X)−H(X|Z) ≤ H(X)−H(X|Y, Z) = H(X)−H(X|Y ) = I(X;Y ).

33
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5.2 Lower bound for indexing

Remark. This example shall guide us through many useful ideas.

There are two players: Alice and Bob. Alice gets a uniformly random X in {0, 1}n and

Bob gets an independent I that is uniform in [n]. Their goal is that Bob will know the bit

XI . To achieve this goal, Alice sends Bob some message M = M(X,R) where R is some

extra randomness that Bob knows as well (and is independent of X). Alice can send the n

bits of X to Bob.

Can she do much better?

The first observation is that if Alice sends k bits then

I(X;M) ≤ H(M) ≤ k.

This amount of information, intuitively, is spread between the n possible values of I. The

average information on an average i is k
n
. If k � n then Bob got very little info on XI , and

so he can’t expect to know it. Now, let’s formalize this.

Exercise 46 (general chain rule).

I(X, Y ;Z) = I(X;Z) + I(Y ;Z|X),

where

I(Y ;Z|X) = H(Y |X)−H(Y |Z,X).

Claim 47 (chain rule for independence). If X1, . . . , Xn are independent then∑
i

I(Xi;Y ) ≤
∑
i

I(Xi;Y X<i) = I(X;Y ).

Remark. This is surprising and powerful; the information contained in Y is at most “evenly

split” between the coordinates of X, due to independence.

Proof. By independence and the chain rule,

I(X;Y ) = H(X)−H(X|Y )

=
∑
i

H(Xi)−H(Xi|Y X<i)

=
∑
i

I(Xi;Y X<i).
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And ∑
i

H(Xi)−H(Xi|Y X<i) ≥
∑
i

H(Xi)−H(Xi|Y )

=
∑
i

I(Xi;Y ).

We can start formalizing the intuiting above; if k � n then M tells Bob very little on

XI :

I(XI ;M |I) =
∑
i

1
n
I(Xi;M) ≤ k

n
.

That’s a start. But how can we show that Bob can’t predict XI? For this, we introduce two

measures of “distance” between distributions.

KL divergence

Definition 48. The KL divergence between two distribution p, q over the same set is

D(p||q) =
∑
x

p(x) log
p(x)

q(x)

where 0 log 0
0

= 0.

Remark. The KL divergence can be infinite.

Remark. It is part of the family of f -divergences that we shall discuss later on:

D(p||q) =
∑
x

q(x)
p(x)

q(x)
log

p(x)

q(x)
= Ex∼qf(p(x)

q(x)
)

where f(z) = z log z is so that f is convex in [0,∞) and f(1) = 0.

Claim 49. D(p||q) ≥ 0.

Remark. The claim is sometimes called Gibbs’s inequality.

Proof.

D(p||q) =
∑
x

q(x)f(p(x)
q(x)

) ≥ f
(∑

x

q(x)p(x)
q(x)

)
= 0,

where f(z) = z log z.

Remark. Some intuition for D(p||q) ≥ 0. If we know that X ∼ q then we can encode X

using approximately H(q) bits. Each x is encoded using ≈ log 1
q(x)

bits. But what if we are
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wrong? What if we think that the input distribution is q, but the true distribution is p? This

creates some inefficiency. The loss is

D(p||q) =
∑
x

p(x) log
1

q(x)
−H(p).

Remark. In general D(p||q) 6= D(q||p).

Remark. If pX is the distribution of X ∈ [n] and u is the uniform distribution on [n] then

H(X) = log(n)−D(pX ||u).

In words, the divergence from the uniform distribution is (up to a constant) the entropy.

Remark. The KL divergence is deeply related to mutual information. The mutual informa-

tion is the divergence between the true distribution and the product of the marginals:

I(X;Y ) = D(pX,Y ||pX × pY ).

And the mutual information is also the divergence between the (posterior) distribution of Y

conditioned on X = x, and the (prior) distribution of Y :

I(X;Y ) = ExD(pY |x||pY ).

Remark. Entropy is defined only for discrete random variables. Divergence and hence mu-

tual information are defined more generally. The expression p(x)/q(x) is the Radon-Nikodym

derivative; for example, if we have two densities f, g on Rd then

D(f ||g) =

∫
x

f(x) log(f(x)
g(x)

)dx.

Statistical distance

Definition 50. The statistical distance between two distribution p, q is

|p− q| := max{p(E)− q(E) : E is an event}.

In words, the probabilities of events in p and q are the same up to |p− q|.

Exercise 51. 2|p− q| = ‖p− q‖1 =
∑

x |p(x)− q(x)|.

Remark. The maximizing event can be identified from the two histograms: E = {x : p(x) >

q(x)}. The event E is the part of the world that the histogram of p is above that of q.
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Remark. If X ∼ p and Y ∼ q then there is a coupling of X, Y (a joint distribution on X, Y

so that each is distributed correctly) so that

P[X 6= Y ] ≤ 2|p− q|.

Here’s a sketch of the construction. Draw the two histograms in [n] × [0, 1], where [n] is

the support of both p and q. Let (z1, r1), (z2, r2), . . . be an infinite sequence of i.i.d. uniform

points in [n]× [0, 1]. Let

TX = min{t : rt ≤ p(zt)}

and

TY = min{t : rt ≤ q(zt)}.

Set

X = zTX & Y = zTY .

The first claim is that both X, Y are correctly distributed. The second claim is that

Pr[X 6= Y ] ≤ Pr[TX 6= TY ] ≤ Pr[TX < TY ] + Pr[TX > TY ] ≤ 2|p− q|.

Intuitively, Pr[TX < TY ] means that the dart we threw at time TX fell under the histogram

of p but not under that of q. This means that out of the area of 1/n under the histogram of

p, the arrow landed in the “wrong region” that has area |p− q|/n.

Remark. This coupling can be viewed as a game between two players. Alice known p and

Bob knows q. Alice’s goal is to sample X from p, Bob’s is to sample Y from q, but they

also want X = Y with as high chance as possible. The above allows to achieve this with no

communication, using just shared public randomness. In fact, this is done when Alice does

not know q and Bob does not know p.

Relating the two

Remark. We defined D(p||q) and |p − q|. The former is useful because it is related to

information and satisfies chain rules:

D(pX,Y ||qX,Y ) = D(pX ||qX) + Ex∼pXD(pY |x||qY |x).

The latter is useful because it is related to probabilities of events. The following important

inequality connects between the two.

Theorem 52 (Pinsker). D(p||q) ≥ 2|p− q|2.

Proof sketch. If D(p||q) = ∞ then we are done. So we can assume that if q(x) = 0 then

p(x) = 0. Let E be the event that maximizes p− q. Think of X as a random variable that

is distributed as p or q:

D(p||q) = D(pX ||qX).
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Let Y ∈ {0, 1} be the indicator of X ∈ E. By the chain rule and because divergence is

non-negative:

D(pX,Y ||qX,Y ) = D(pX ||qX) + Ex∼pD(pY |x||qY |x)
= D(pX ||qX) + 0

and

D(pX,Y ||qX,Y ) ≥ D(pY ||qY ).

It remains to prove

D(pY ||qY ) ≥ 2(p(Y = 1)− q(Y = 1))2.

In other words, we need to prove that for all a, b ∈ [0, 1],

a log a
b

+ (1− a) log 1−a
1−b − 2(a− b)2 ≥ 0.

This is a two-dimensional statement and can be verified via elementary calculus. Here’s the

two-dimensional picture (lighter color is higher value):

Remark. The square in Pinsker’s inequality must be there (and is sharp). The divergence

between the distribution of X ∼ Ber(1
2

+ ε) and Y ∼ Ber(1
2
) is O(ε2) and the statistical

distance is ε. This is related to the fact that two distinguish between X and Y via sampling

we must toss the coin order 1
ε2

times.

Putting it together

Going back to indexing, recall that

I(XI ;M |I) ≤ k
n
.
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Write the l.h.s. as

EIEMD(pXI |M ||pXI
).

The distribution pXI
is uniform in {0, 1}; denote it by u. By Pinsker and convexity,

EIEMD(pXI |M ||u) ≥ EIEM2|pXI |M − u|2 ≥ 2(EIEM |pXI |M − u|)2.

Together,

EIEM |pXI |M − u| ≤
√

k
2n
.

In other words, if k ≤ n
50

then even after Bob knows M , the bit XI is 1
10

-close to uniform, so

Bob can’t expect to guess it correctly with probability higher than 1
2

+ 1
10

.

Remark. Even with no communication Bob can output a correct guess with probability 1
2
.

Remark. A summary of the approach: First, use the chain rule for mutual information to

move from n coordinates to a single random coordinate. Second, use Pinsker to move from

mutual information to statistical distance.
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Chapter 6

Harmonic functions

Remark. Harmonic functions are the kernel of the laplacian. There is a rich theory with

connections to many areas in math. The term “harmonic” comes from the wave equation

(imagine a string of a guitar). Here we see how information theory can help to analyze the

space of harmonic functions. The model for “geometry” we use is that of Cayley graphs.

Notation 53. Let G = 〈S〉 be a group generated by a finite set S. Assume that S is

symmetric

S = S−1 = {s−1 : s ∈ S}.

Definition 54. The Cayley graph of G,S has vertex-set G, and its edges are of the form

{g, sg} for s ∈ S. It is denoted by Cay(G,S).

Remark. The graph is undirected because S is symmetric.

Remark. Our focus is on infinite groups.

Example 55. The Cayley graph of (Z,±1) is the line. The Cayley graph of (Z2, (±1,±1))

is “the standard square lattice”. The Cayley graph of the free group with k generators is the

(2k)-regular infinite tree.

Remark. Cayley graphs provide a powerful framework for studying the group.

Definition 56. A function f : G → R is harmonic (with respect to S) if for every g ∈ G,

the value f(g) is equal to the average of f on the neighbors of g:

f(g) =
1

|S|
∑
s∈S

f(sg).

Example 57. In a star with four vertices, the middle value is zero, and the values of the

four neighbors are −1,−1, 2.

Example 58. The constant functions are harmonic.
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Example 59. A linear function on (Z,±1) is harmonic. This is true also for all S and for

higher dimensions.

Example 60. Build a bounded harmonic function on the 4-regular tree (“there is always a

possibility to continue”).

Remark. The space of harmonic functions is a vector space over R. Its dimension teaches

us something about the “geometry”.

Remark. For complex functions f : C → C, if f is holomorphic (i.e. differentiable every-

where) and f = u+ iv, then both u, v are harmonic.

Remark. Liouville’s theorem for complex functions states that a bounded holomorphic func-

tion is constant. It can be extended to all harmonic functions on Rn. (The theorem was

actually proved by Cauchy.) The property of Rn that is key in the proof is that the boundary

size of balls in Rn are much smaller than their volume (this follows from commutativity or

polynomial-growth; more on this below).

Definition 61. A graph is called Liouville if every bounded harmonic function on it is

constant.

Definition 62. A random walk on the Cayley graph starts at X0 ∈ G, and Xt+1 is defined

from Xt by choosing a uniformly random element st+1 of S, independently of all previous

choices, and setting Xt+1 = st+1Xt.

Remark. The behavior of the random walk tells us a lot about the graph and the group.

Theorem 63 (Kaimanovich-Vershik, Avez). Let (Xt) be a random walk on Cay(G,S) started

at X0 = id. If

lim
t→∞

H(Xt)

t
= 0

then Cay(G,S) is Liouville.

Remark. The theorem is actually an “if and only if” statement.

Remark. A central open problem in this area is “is Liouville a group property?” Is it true

that the Liouville property holds for all generating sets, or for none?

Remark. Because we are dealing with a Cayley graph, the entropy H(Xt|X0 = x0) does not

depend on x0.

Exercise 64. Prove that the limit of H(Xt)
t

exists.

Example 65. The Cayley graph of Z2 with (0,±1), (±1, 0) can be thought of as a discrete

version of C or R2. Because G is abelian, it has polynomial growth; the support of Xt is of

size at most t2. It follows that

H(Xt|X0) ≤ 2 log t.

Every bounded harmonic function on this graph is therefore constant.
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Example 66. If G is the free group generated by two generators, then the Cayley graph is

a four regular infinite tree, and there are bounded harmonic functions that are not constant.

What is the entropy of Xt? It must be Ω(t); in fact it is roughly log(3)t.

Remark. Let us start building the bridge between harmonicity and entropy, between analysis

and information theory.

Lemma 67. Let X, Y be random variables and let r be a function. If Er(X) = 0 and

‖r‖∞ ≤ 1 then

EY
∣∣E[r(X)|Y ]

∣∣ ≤√2I(X;Y ).

Proof. For every y, ∣∣∣∑
x

p(x|y)f(x)
∣∣∣ =

∣∣∣∑
x

(p(x|y)− p(x))f(x)
∣∣∣ (Ef = 0)

≤
∑
x

|p(x|y)− p(x)| (‖f‖∞ ≤ 1)

≤
√

2D(PX|y||pX). (Pinsker)

Taking expectation over y completes the proof (using convexity).

Remark. Mutual information allows to control an analytic quantity.

Remark. The worst-case condition ‖r‖∞ ≤ 1 can be replaced by the average-case condition

Er2 ≤ 1. A typical way to do so is to replace the |〈u, v〉| ≤ ‖u‖∞‖v‖1 inequality by Cauchy-

Schwarz.

Remark. We shall use the lemma with X = X1 and Y = Xt. Because we are dealing with

a Cayley graph,

I(X;Y ) = I(X1;Xt) = H(Xt)−H(Xt|X1) = H(Xt)−H(Xt−1).

We need to control these differences.

Claim 68. The map t 7→ H(Xt) is increasing and concave.

Remark. The differences H(Xt)−H(Xt−1) get smaller as t grows, so that

H(Xt)−H(Xt−1) ≤
H(Xt)

t
.

Remark. A crucial property behind the claim is the sub-modularity of entropy (also known

as “strong sub-additivity”). For three random variables A,B,C,

H(A,B,C) +H(C) ≤ H(A,C) +H(B,C).
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It can be proved as follows:

H(A,C) +H(B,C)−H(A,B,C) = H(C) +H(A|C) +H(B|C)−H(A,B|C)

= H(C) + I(A;B|C).

Sub-modularity is important in economics and computer science. A function f : 2X is sub-

modular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

An equivalent formulation: if A ⊆ B and x 6∈ B then

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

This is the “diminishing returns” property; if we think of f as “gain” then our gain from x

when we have A is at least as large than when we have B ⊇ A. Stated differently,

f(A ∪ {x}) + f(B) ≥ f(B ∪ {x}) + f(A),

which follows from the first condition with A ∪ {x} and B because A ∪ {x} ∪ B = B ∪ {x}
and (A ∪ {x}) ∩B = A. The other direction can be proved by induction.

Proof of claim. Monotonicity holds because

H(Xt+1) ≥ H(Xt+1|X1) = H(Xt).

Let’s prove

2H(Xt) ≥ H(Xt−1) +H(Xt+1).

Write Xt−1 = g1, Xt = g2g1 and Xt+1 = g3g2g1, where g1 is the position after t − 1 steps,

and g2, g3 are uniform in S (and all are independent). Then,

H(Xt) = H(g2g1) = H(g1g3)

and

H(Xt+1) = H(g2g1g3).

By sub-modularity, because g2g1, g3, g1g3, g2 determine all of g1, g2, g3,

H(g2g1, g3) +H(g1g3, g2) ≥ H(g1, g2, g3) +H(g2g1g3).

So,

H(Xt) +H(Xt) +H(g3) +H(g2) ≥ H(Xt−1) +H(g3) +H(g2) +H(Xt+1).

Remark. The properties of e(t) = H(Xt|X0) hold also for finite groups. For a finite Cayley

graph, e(t) ≤ log |G|, and e(t) monotonically tends to log |G| in a concave manner (more on

this in the next chapter).
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Lemma 69 (Benjamini-(Duminil-Copin)-Kozma-Yadin). If f is harmonic, then almost surely

over X0,

E|f(X1)− f(X0)| ≤
√

2H(Xt)

t
· sup |f(Xt)− f(X0)|.

Remark. The lemma implies that for a (connected) Cayley graph with H(Xt)
t
→ 0, every

bounded harmonic function is constant. The right hand side tends to zero, which means that

f(X1) = f(X0) a.s.

Remark. The limit is zero for all finite groups, so every harmonic function on a finite

connected Cayley graph is constant. This is true for all finite connected graphs (V,E). If

f is harmonic and non-constant, and if v is the maximizer of f then the value of f on the

neighbors of v must be f(v) as well, and so forth. This is a finite version of the “maximum

principle”.

Remark. Going back to infinite Cayley graphs, if f is a non-constant harmonic function

then there is c > 0 and g0 so that

sup{|f(g)| : dist(g, g0) ≤ t} ≥ c

√
t

H(Xt)
.

On Z2 as before we see that every non-constant harmonic function grows at least as quickly

as order
√

t
log t

. This bound can be improved with a more careful analysis.

Definition 70. A sequence of random variables M0,M1, . . . is a Martingale with respect to

X0, X1, . . . if for every t we have

E[Mt+1|X≤t] = Mt.

Remark. In particular, the random variable Mt is measurable with respect to the σ-algebra

generated by X≤t.

Exercise 71. If f is harmonic then Mt = f(Xt) is a Martingale with respect to (Xt)
∞
t=0.

Remark. Martingales have many useful properties; concentration of measure, anti-concentration,

etc.

Proof of lemma. Fix X0, and assume without loss of generality that f(X0) = 0. Because f

is harmonic, for all t ≥ 1,

Ef(Xt) = E E[f(Xt)|X<t] = Ef(Xt−1) = . . . = f(X0) = 0

and similarly

E[f(Xt)|X1] = f(X1).
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By Lemma 67,

EX1|f(X1)| = EX1

∣∣E[f(Xt)|X1]
∣∣

≤
√

2I(X1;Xt) · sup |f(Xt)|.

And as we saw

I(X1;Xt) = H(Xt)−H(Xt|X1) = H(Xt)−H(Xt−1) ≤
H(Xt)

t
.
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The second law of thermodynamics

The second law of thermodynamic says that the entropy increases with time. (We shall not

go into the history or physics.)

Remark. This is unique in that most equations in physics are oblivious to changing the

direction of time.

Question 72. Is it surprising?

Remark. The model we use for the “states of the world” is the vertices of a finite graph,

and the transitions between states (“laws of physics”) are the edges of the graph.

Question 73. Does the second law always hold?

Example 74. Consider a random walk on a path of length two. Start it in the middle vertex.

At even times the entropy of Xt is zero, and at odd times it is one. The second law does not

hold.

Example 75. Consider a random walk on a triangle. The entropy of X0 is zero, of X1 is

one, and of X2, . . .? The entropy increases in this case.

Question 76. What is the difference between the two systems?

Brief intro to random walks

Let G be a connected and non-bipartite graph.

Definition 77. Consider the matrix

Mx,y =
1{x,y}∈E
deg(x)

.

In words, Mx,y is the probability that a (simple) random walk moves from x to y.
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Remark. If at time t the random walk has distribution pt, then at time t+1 the distribution

is pt+1 = ptMt:

pt+1(y) =
∑
x

pt(x)Mx,y.

In matrix form, pt+1 = ptM .

Remark. It follows that pt = p0M
t. This indicates that spectral properties of M are impor-

tant in understanding the behavior of the random walk. Because pt is a probability distribu-

tion, and not a general vector, not only the spectral properties determine the behavior.

Remark. An important notion is “stationary” distribution; a distribution π so that

π = πM.

If we start with π, then we remain with π for all times.

Claim 78. The random walk on G has a stationary distribution π.

Remark. Intuitively, the higher the degree of x is (compared to others), the more likely we

are to visit x.

Proof. The stationary measure is defined by

πx =
deg(x)

2|E|
,

because

(πM)y =
∑
x

deg(x)

2|E|
1{x,y}∈E

1

deg(x)
=
deg(y)

2|E|
.

Remark. Because G is not bipartite, the stationary measure is unique. We shall not prove

this now; e.g., the Perron-Frobenius theorem.

Remark. For every initial distribution p0, we have that pt → π as t→∞.

Remark. If π is not uniform (i.e., the graph is not regular) then the entropy can decrease,

because if p0 is uniform (with maximum entropy) then H(pt) < H(p0) for some large enough

t.

Remark. We saw that entropy is basically the divergence from the uniform distribution.

This leads to the following general second law.

The second law

Theorem 79. For every initial distribution p0, the map t 7→ D(pt||π) is decreasing.

Corollary 80. If π is uniform then the entropy of pt is increasing.
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The theorem follows from the following more general lemma.

Lemma 81. Let p0, q0 be two initial distributions on V = V (G). Denote by pt, qt the

distributions of the random walks at time t. Then,

D(pt+1||qt+1) ≤ D(pt||qt).

Remark. The lemma is more general because if qt = π is stationary then qt+1 = π.

Proof of lemma. Let X be the state at time t and Y be the state at time t+ 1, so that

aX,Y (x, y) = pt(x)Mx,y

and

bX,Y (x, y) = qt(x)Mx,y.

By the chain rule for divergence (twice):

D(aX,Y ||bX,Y ) = D(aX ||bX) + Ex∼aXD(aY |x||bY |x) = D(pt||qt) + Ex∼pX0

and

D(aX,Y ||bX,Y ) = D(aY ||bY ) + Ey∼aYD(aX|y||bX|y) ≥ D(pt+1||qt+1) + Ex∼pX0.

Example 82. Consider a star with k leaves v1, . . . , vk and a root v0. This graph is bipartite.

If the random walk starts at v0 then at even times it is on v0 and at odd time it is on

the leaves. So pt alternates between 1x=v0 and the uniform distribution on the k leaves. A

stationary distribution π assigns v0 weight 1
2

and each leaves weight 1
2k

, so that

D(p0||π) = 1 log
1

1/2
= 1

and

D(p1||π) =
k∑
x=1

1

k
log 1/k

1/(2k)
= 1.

This second law still holds, but in a not so interesting way.

Remark. If G is regular then π is uniform. In this case, there is symmetry in time when

p0 = π. The law of (X0, X1) is the same as the law of (X1, X0). At the same time, both

H(Xt|X1) and H(Xt) are increasing in time. Even in systems that are symmetric in time,

some quantities grow with time.

Remark. Under the stationary distribution, the information about the future gets smaller

with time. If p0 is stationary then

t 7→ I(Xt;X0)
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is decreasing:

I(Xt+1;X0) = H(Xt+1)−H(Xt+1|X0)

≤ H(Xt)−H(Xt+1|X0, X1)

= H(Xt)−H(Xt+1|X1)

= H(Xt)−H(Xt|X0) = I(Xt;X0).

Remark. The second law for entropy holds for “regular” systems where the uniform distri-

bution is the stationary one. What does it say about the world?



Chapter 8

Mutual information and sampling

Remark. If I(X;Y ) = 0 then X, Y are independent. What if I(X;Y ) = 1? It is tempting

to guess that the following is true: If I(X;Y ) = 1 then there is a random variable Z so that

H(Z) = 1 and conditioned on Z = z, the variables X and Y become independent. This turns

out to be too good to be true.

Example 83. For every k, there is a distribution on X, Y so that I(X;Y ) ≤ 1 but for every

Z so that conditioned on Z = z, the variables X, Y are independent, it holds that H(Z) ≥ k.

The distribution of X, Y is constructed as follows. Let M be an n×n Boolean matrix so that

the largest monochromatic sub-matrix of M has size at most O(n). A random matrix satisfies

this with high probability. Let (X, Y ) be a random entry in M among the one entries. The

mutual information I(X;Y ) is

I(X;Y ) = H(X) +H(Y )−H(X, Y ) . 2 log(n)− log(n2/2) = 1.

If Z is so that conditioned on Z = z, the variables X, Y are independent so that

H(X, Y |Z) ≤ log(n) +O(1)

and

2 log(n) . H(X, Y ) ≤ H(X, Y, Z) = H(Z) +H(X, Y |Z).

So that

H(Z) & 2 log(n)− log(n).

Remark. What is the correct statement?

Theorem 84. For every jointly distributed random variables X, Y , there is a distribution

on three random variables (X, Y, Z) so that

1. (X, Y ) is distributed correctly.

2. Z is independent of X.
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3. Y is a deterministic function of (X,Z).

4. H(Y |Z) ≤ I(X, Y ) + log(I(X, Y ) + 1) + C, where C > 1 is some universal constant.

Remark. The theorem can be interpreted as via the following story. Alice wants to sample

X and Bob wants to sample Y , but X, Y are jointly distributed. Alice samples X, and wishes

to send a message M to Bob that tells him what is the appropriate Y . They have access to

public randomness Z. Alice can send Bob ≈ I(X;Y ) bits to achieve this task.

Remark. This was proved by Harsha-Jain-McAllester-Radhakrishnan, and by Braverman-

Garg.

Remark. In a paper with Bassily, Moran, Nachum and Shafer we found applications to

learning theory.

Remark. The proof actually works in a more general scenario.

Remark. There are two distributions on p and q on Y . Alice knows both of them, and Bob

just knows q. The players have public randomness, and Alice want to send Bob a message

that allows him to sample from p. Alice can send Bob a message of expected length

D(q||p) + log(D(q||p) + 1) + C.

This is a stronger “point-wise” guarantee; in the theorem above, Alice first choses x and then

there are p = pY |x and q = pY .

Proof. What is the random variable Z? It is an infinite sequence (z1, α1), (z2, α2), . . . of i.i.d.

samples that are uniform in [n]× [0, 1], where Y takes values in [n].

Remark. This is reminiscent of the coupling we saw earlier.

Alice samples x from the correct distribution. Then she finds

T = min{t : αt < p(zt)}.

Alice sends T to Bob, who now knows y. As we saw, the eventual (x, y) are properly

distributed.

How should Alice convey T to Bob?

The data T is encodes in three parts:

K =

⌈
T

n

⌉
, Q =

⌈
αT
q(zT )

⌉
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and the index I of T among all n samples in {(K − 1)n + 1, . . . , Kn} that are consistent

with Q. That is, among the indices t in that interval so that

Q =

⌈
αt
q(zt)

⌉
.

We need to bound the entropy of each part separately.

Claim 85. H(K) ≤ O(1).

Proof idea. The entropy of K is bounded because

Pr[T = 1] = 1
n
.

This means that Pr[K > 1] ≤ 3
4

and in general Pr[K > k] ≤ (3
4
)k.

Claim 86. E[logQ] ≤ I(X;Y ) + 2.

Proof idea. First, bound E[logQ] from above. By the choice of T and Q,

E[logQ] ≤ Ez∼pE
[

log
( α

q(z)
+ 1
)∣∣∣α < p(z)

]
=
∑
z∈[n]

p(z) · 1

p(z)

∫ p(z)

0

log
( α

q(z)
+ 1
)
dα

≤
∑
z∈[n]

∫ p(z)

0

log
(p(z)

q(z)
+ 1
)
dα

=
∑
z∈[n]

p(z) log
(p(z)

q(z)
+ 1
)
.

Use that log(ξ + 1)− log(ξ) ≤ 2
ξ

to bound

E[logQ] ≤
∑
z∈[n]

p(z)
(

log
(p(z)

q(z)

)
+

2 Pr[Y = z]

p(z)

)
= D(q||p) + 2.

Claim 87. H(I) ≤ O(1).
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Proof idea. There are n possible indices we care about. For each index t,

Pr[t ∈ I] = Pr[Q− 1 <
αt
q(zt)

≤ Q]

= Pr[(Q− 1) Pr[Y = zt] < αt ≤ Qq(zt)]

≤
∑
z

Pr[zt = z] · Pr[(Q− 1)q(z) < αt ≤ Qq(z)]

≤
∑
z

1

n
· q(z) =

1

n
.

In words, among the n indices, typically only a constant number are consistent with Q. It

follows that H(I) is constant (the details are left as an exercise).

Exercise 88. For a random variable M taking values in N,

H(M) ≤ E[log(M)] + 2 log(E[log(M + 1)]) + C.

Exercise 89. There is a random variable M taking value in N so that

H(M) > E[log(M)] + log(E[log(M)]).

Remark. Entropy is deeply related to prefix-free encoding. There is a prefix-free encoding

E0 of N so that for each n we have |E0(n)| ≤ n; this is the unary encoding. There is a

prefix-free encoding E1 of N so that for each n we have |E1(n)| ≤ 2 log(n); this is obtained by

adding a bit after each bit of the binary encoding, and the additional bits are 000 . . . 001. By

first encoding dlog ne using E1, we get a prefix-free encoding E2 so that for each n we have

|E2(n)| ≤ log(n) + 1 + 2 log(log(n) + 1). The code E2 is slightly better. We can continue...

Exercise 90. If E is a prefix-free encoding of N so that |E(n)| decreases with n then |E(n)| ≥
log(n) + log(log(n)) + ω(1).
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Graph entropy

Remark. There are many natural communication scenarios, and each leads to different

mathematics. Körner suggested the following scenario, which lead to the definition of graph

entropy. We have a source of randomness X ∼ pT where p is the uniform distribution

on a finite set V . (We focus on the uniform distribution for concreteness.) We want to

understand how efficiently we can encode X. But there is a catch. Some of the symbols in

V are distinguishable and some are not.

This is captured by the edges of a graph G = (V,E). If {v, u} ∈ E then the two alphabet

symbols v, u are distinguishable. If {v, u} 6∈ E then they are indistinguishable. Two strings

x, x′ ∈ V T are indistinguishable if all of their coordinates are indistinguishable. The T ’th

power GT of G is the graph with vertex-set V T where x 6= x′ in V T are connected by an edge

iff {xi, x′i} ∈ E for some i ∈ [T ].

Our goal is to find an encoding f of X with maximum entropy. The encoding must

respect the structure; that is, if x, x′ are distinguishable then f(x) 6= f(x′). We also allow an

ε-fraction of errors. For U ⊆ V T so that pT (U) ≥ 1− ε, an encoding f that is “proper” on

U defines a proper coloring of the vertices in U . The encoding length is therefore at most

logχ(GT |U)

where GT |U is the induced graph on U . This leads to the following definition.

Definition 91. The ε asymptotic rate of G is defined to be

Rε(G) = lim
T→∞

min
U

1

T
logχ(GT |U),

where U ∈ V (GT ) is so that pT (U) > 1− ε.

Remark. Körner proved that the limit exists and the result is given by the graph entropy.

Definition 92. The graph entropy of G is

H(G) = min
Y
I(X;Y ),
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where the minimum is over a random independent set Y in the graph that must contain X.

Theorem 93 (Körner). For all ε > 0,

Rε(G) = H(G).

Remark. We shall not prove that, but we shall see some examples and applications.

Example 94. If G is the empty graph, we can choose Y = V and H(G) = 0.

Example 95. If G is the complete graph, the only choice we have is Y = {X}, and H(G) =

log n.

Example 96. If G is bipartite then

H(G) ≤ 1

be choosing Y to be the color class of X, because

H(X) = log n

and

H(X|Y ) = q log(qn) + (1− q) log((1− q)n) = log n− h(q)

where q is the fractional size of one of the color classes.

Remark. Here is another equivalent definition (we shall not prove the equivalence).

Lemma 97. The independent set polytope ISP (G) ⊂ RV of G is the convex hull of the

indicators of independent sets in G. It is a compact convex set. The graph entropy of G is

H(G) = inf
a∈ISP (G)

1

|V |
∑
x∈V

log 1
ax
,

where a is assumed to be positive everywhere.

Properties

Remark. It is possible to control the growth of graph entropy under several operations. We

mention a couple.

Lemma 98. If G1, G2 have the same vertex set and G1 ⊆ G2 then

H(G1) ≤ H(G2).

Proof. An independent set in G2 is also an independent set in G1.



57

Lemma 99. If G1, G2 have the same vertex set then

H(G1 ∪G2) ≤ H(G1) +H(G2).

Proof. Let Y1 be the minimizer for G1, and Y2 be the minimizer for G2. The set Y1 ∩ Y2 is

independent in G1 ∪G2, and contains X. Conditioned on the value of X, the two sets Y1, Y2
are independent. So,

H(G1 ∪G2) ≤ I(X;Y1 ∩ Y2)
≤ I(X;Y1, Y2)

= H(Y1, Y2)−H(Y1, Y2|X)

= H(Y1, Y2)−H(Y1|X) +H(Y2|X)

≤ H(Y1) +H(Y2)−H(Y1|X) +H(Y2|X).

Exercise 100. If G1, G2 are graphs on disjoint vertex-sets, and G is their union, then

H(G) =
|V (G1)|
|V (G)|

H(G1) +
|V (G2)|
|V (G)|

H(G2).

Remark. We move to two applications.

Covering graphs

Remark. The problem of covering a target graph using graphs from some family of graphs

is natural and has applications. One specific example is covering Kn by bipartite graphs.

Theorem 101. If B1, . . . , Bt are bipartite graphs with vertex-set [n], and their union is the

complete graph, then t ≥ log n.

Proof.

log n = H
(⋃

i

Bi

)
≤
∑
i

H(Bi) ≤ t.

Remark. This can also be proved by analyzing the chromatics number (χ(G1 ∪ G2) ≤
χ(G1)χ(G2)).

Computational complexity

Remark. The main goal is to understand the minimum number of operations that are needed

to achieve some goal. Here we focus on a specific situation (studied by Krichevskii, and we

shall follow proofs by Newman, Ragde and Wigderson and by Radhakrishnan).

Definition 102. A monotone boolean formula is a rooted binary tree whose leaves are labelled

by variables x1, . . . , xn and inner nodes by ∨,∧.
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Remark. A boolean formula computes a function is the obvious way. The cost of the com-

putation is the size of the formula; i.e., the number of leaves in it.

Remark. A general formula can also have negated variables at the leaves, but we do not

address this model here.

Remark. Given a monotone function f : {0, 1}n → {0, 1}, its monotone formula complexity

M(f) is the least size of a monotone formula computing f .

Remark. On a high-level, devices have costs and functions have complexities.

Remark. The monotone formula complexity of a monotone n-variate function is at most

n2n.

Theorem 103. Let T = Tn,2 be the threshold function that is 1 iff
∑

i xi ≥ 2. Then

M(T ) ≥ n log n.

Remark. The proof proceed by constructing a “progress” measure µ. This is a measure

whose value on the leaves is small, and does not grow much during the operations. So if µ(f)

is large then f must require many operations. This is a standard and natural method for

proving complexity lower bounds. The hard part is to come up with the “correct” measure.

Definition 104. For a monotone boolean function f and an integer k, denote by fk the set

of inputs x of weight |x| = k so that f(x) = 1 and if y < x then f(x) = 0. The set f1 can be

thought of as a subset of the coordinates [n]. The set f2 can be thought of as a graph. Define

µ(f) = H(f2) +
|f1|
n
.

Proof. The function T has large measure

µ(T ) = H(Kn) + 0 = log n.

If f is computed on a leaf then

µ(f) = 0 +
1

n
.

If f = h ∨ g then

fk ⊂ hk ∪ gk.

The subadditivity of graph entropy yields

µ(f) ≤ µ(h) + µ(g).

If f = g ∧ h then the argument is a bit more complicated, because

f1 ⊆ g1 ∩ h1
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but

f2 ⊆ g2 ∪ h2 ∪ E

where

E = {{i, j} : i ∈ g1 \ h1, j ∈ h1 \ g1}.

(If x ∈ f2 then g(x) = h(x) = 1, but it could be that x 6∈ g2∪h2, because it is not “minimal”.)

We need to understand H(E). The graph E has two parts. One part is a complete bipartite

graph with sides g1 \h1 and h1 \g1. Its entropy is at most one, and the number of its vertices

is |g1 ∪ h1| − |g1 ∩ h1|. The other part is the empty graph. We can conclude that

H(E) ≤ 0 +
|g1 ∪ h1| − |g1 ∩ h1|

n
· 1.

Therefore,

µ(f) ≤ |h1 ∩ g1|
n

+H(g2) +H(h2) +
|g1 ∪ h1| − |g1 ∩ h1|

n
≤ µ(g) + µ(h).

We can finally conclude that if T is computed by a formula of size s then

log n = µ(T ) ≤ s · 1

n
.
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