Information theory: assignment 2

1. Describe a (probabilistic) algorithm that gets as input a k-CNF formula $f=\bigwedge_{i \in[s]} C_{i}$ so that $\left|\Gamma\left(C_{i}\right)\right| \leq 2^{k-3}$ for all i. The algorithm should output, with probability at least $2 / 3$, a satisfying assignment to f. Explain how to change the algorithm to get probability of success at least $1-\delta$ for a given $\delta>0$. How does this affect the running time?
2. For two independent random variables X, Y taking values in a finite abelian group G, define (the entropy version of) Ruzsa's distance as

$$
d(X, Y)=H(X-Y)-(H(X)+H(Y)) / 2 .
$$

Prove

$$
d(X, X) / 2 \leq d(X,-X) \leq 2 d(X, X),
$$

where the two input to d are "assumed to be independent" (e.g., $d(X,-X):=d(X, Y)$ with Y independent of X and distributed like $-X$).
3. Let p, q be two distributions on $X \times Y$.

Prove

$$
D(p(x, y) \| q(x, y))=D(p(x) \| q(x))+\mathbb{E}_{x \sim p} D(p(y \mid x) \| q(y \mid x)),
$$

where $p(x), q(x)$ are marginals of x, and $p(y \mid x), q(y \mid x)$ are conditional probabilities of y given x.
4. Let P_{n} be the families of probability distributions on $[n]$. Let $R_{n}(k)$ be the subset of P_{n} of distributions $\left(p_{i}\right)_{i \in[n]}$ with expectation k, that is, $\sum_{i \in[n]} p_{i} i=k$.
What is the distribution with largest entropy in $R_{n}(k)$?
5. A family F of sets is k-intersection-unique if all sets in F are of size exactly k and for every $A \neq B$ in F, the set $A \cap B$ is not contained in any other sets in F, that is, $A \cap B \not \subset C$ for all $C \in F \backslash\{A, B\}$.
Prove that the size of a k-intersection-unique family F is at most $2^{0.9 k+1}$. (Hint: use subadditivity, concavity, and reduce to problem of "constant size.")

