Information theory: assignment 2

- 1. Describe a (probabilistic) algorithm that gets as input a k-CNF formula $f = \bigwedge_{i \in [s]} C_i$ so that $|\Gamma(C_i)| \leq 2^{k-3}$ for all *i*. The algorithm should output, with probability at least 2/3, a satisfying assignment to f. Explain how to change the algorithm to get probability of success at least 1δ for a given $\delta > 0$. How does this affect the running time?
- 2. For two independent random variables X, Y taking values in a finite abelian group G, define (the entropy version of) Ruzsa's distance as

$$d(X, Y) = H(X - Y) - (H(X) + H(Y))/2.$$

Prove

$$d(X,X)/2 \le d(X,-X) \le 2d(X,X),$$

where the two input to d are "assumed to be independent" (e.g., d(X, -X) := d(X, Y) with Y independent of X and distributed like -X).

3. Let p, q be two distributions on $X \times Y$.

Prove

$$D(p(x,y)||q(x,y)) = D(p(x)||q(x)) + \mathbb{E}_{x \sim p} D(p(y|x)||q(y|x)),$$

where p(x), q(x) are marginals of x, and p(y|x), q(y|x) are conditional probabilities of y given x.

- 4. Let P_n be the families of probability distributions on [n]. Let R_n(k) be the subset of P_n of distributions (p_i)_{i∈[n]} with expectation k, that is, ∑_{i∈[n]} p_ii = k. What is the distribution with largest entropy in R_n(k)?
- 5. A family F of sets is k-intersection-unique if all sets in F are of size exactly k and for every $A \neq B$ in F, the set $A \cap B$ is not contained in any other sets in F, that is, $A \cap B \not\subset C$ for all $C \in F \setminus \{A, B\}$.

Prove that the size of a k-intersection-unique family F is at most $2^{0.9k+1}$. (Hint: use subadditivity, concavity, and reduce to problem of "constant size.")