Information theory: assignment 1

1. Let X, Y, Z be three Bernoulli $(1 / 2)$ random variables that are pairwise independent. Under this constraint, what is the minimum value for $H(X, Y, Z)$? Give an example achieving this minimum.

What would the minimum value for $H(X, Y, Z)$ be if the constraint above was replaced with $H(A \mid B)=\alpha$ for every two different random variables A, B in $\{X, Y, Z\}$ and some $0 \leq \alpha \leq 1$?
2. Let A be a subset of $\{0,1\}^{n}$ with average weight at least $0.6 n$. That is, if a is a (uniform) random element of A, then $\mathbb{E}|a| \geq 0.6 n$, where $|a|=\sum_{i \in[n]} a_{i}$.
Prove that there is a constant $c<1$ so that $|A| \leq 2^{c n}$. What is the smallest c you can achieve?
3. (a) Prove that for every three (finitely supported) random variables X, Y, Z,

$$
2 H(X, Y, Z) \leq H(X, Y)+H(X, Z)+H(Y, Z) .
$$

Can you generalize this inequality? Can you prove the generalization?
(b) For a set $A \subset \mathbb{Z}^{3}$, let $\pi_{23}(A)$ be the projection of A onto the 23 -plane, that is,

$$
\pi_{23}(A)=\left\{\left(x_{2}, x_{3}\right) \in \mathbb{Z}^{2}: \exists x_{1} \in \mathbb{Z} \quad\left(x_{1}, x_{2}, x_{3}\right) \in A\right\}
$$

Define $\pi_{13}(A), \pi_{23}(A)$ similarly. What is the maximal size of a set $A \subset \mathbb{Z}^{3}$ so that

$$
\left|\pi_{23}(A)\right|=12,\left|\pi_{13}(A)\right|=20,\left|\pi_{23}(A)\right|=15 ?
$$

What is the set that attains this maximum?

