Balancing Syntactically Multilinear Arithmetic Circuits

Ran Raz * Amir Yehudayoff ${ }^{\dagger}$

Abstract

In their seminal paper, Valiant, Skyum, Berkowitz and Rackoff proved that arithmetic circuits can be balanced [VSBR]. That is, [VSBR] showed that for every arithmetic circuit Φ of size s and degree r, there exists an arithmetic circuit Ψ of size poly (r, s) and depth $O(\log (r) \log (s))$ computing the same polynomial. In the first part of this paper, we follow the proof of VSBR and show that syntactically multilinear arithmetic circuits can be balanced. That is, we show that if Φ is syntactically multilinear, then so is Ψ.

Recently, [R04B proved a super-polynomial separation between multilinear arithmetic formula and circuit size. In the second part of this paper, we use the result of the first part to simplify the proof of this separation. That is, we construct a (simpler) polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ such that - Every multilinear arithmetic formula computing f is of size $n^{\Omega(\log (n))}$. - There exists a syntactically multilinear arithmetic circuit of size poly (n) and depth $O\left(\log ^{2}(n)\right)$ computing f.

1 Introduction

Arithmetic circuits use sums and products to compute multivariate polynomials. The size of an arithmetic circuit is the number of operations it uses. The depth of an arithmetic circuit can be thought of as the

[^0]parallel time it takes for the circuit to complete its computation. The degree of an arithmetic circuit is the maximal degree of a polynomial computed by it. Surprisingly, Valiant, Skyum, Berkowitz and Rackoff showed that the computation of polynomial-size polynomial-degree arithmetic circuits can be done in short parallel time using a polynomial number of operations VSBR. More precisely, they showed that for every arithmetic circuit of size s and degree r, there exists an arithmetic circuit of size $\operatorname{poly}(r, s)$ and depth $O(\log (r) \log (s))$ computing the same polynomial.
Previously to [VSBR], Hyafil [H] showed that for every polynomial-size polynomial-degree arithmetic circuit, there exists an arithmetic formula of quasi-polynomial size computing the same polynomial. It remains an outstanding open problem to decide whether for every polynomial-size polynomial-degree arithmetic circuit, there exists a polynomial-size arithmetic formula computing the same polynomial. Recently, R04B solved this problem for the multilinear case. R04B showed a super-polynomial separation between the size of multilinear arithmetic formulas and multilinear arithmetic circuits.

In this paper, we follow the proof of VSBR and show that syntactically multilinear computations can be done in short parallel time using a small number of operations (without violating the syntactical multilinearity condition). That is, we show that for every syntactically multilinear arithmetic circuit of size s and degree r, there exists a syntactically multilinear arithmetic circuit of size poly (s) and depth $O(\log (r) \log (s))$ computing the same polynomial. We use this to simplify the proof of the superpolynomial separation between the size of multilinear formula and circuit size.

1.1 Arithmetic Circuits and Formulas

An arithmetic circuit Φ over the field \mathbb{F} and the set of variables X is a directed acyclic graph as follows: Every vertex v in Φ is either of in-degree 0 or of in-degree 2. Every vertex v of in-degree 0 is labelled by either a variable in X or a field element in \mathbb{F}. Every vertex v of in-degree 2 is labelled by either \times or + . An arithmetic circuit Φ is called an arithmetic formula, if Φ is a directed binary tree (the edges of an arithmetic formula are directed from the leaves to the root).

The vertices of an arithmetic circuit Φ are also called gates. Every gate of in-degree 0 is called an input gate. Every gate of in-degree 2 labelled by \times is called a product gate. Every gate of in-degree 2 labelled by + is called a sum gate. Every gate of out-degree 0 is called an output gate. For two gates u and v, if (u, v) is an edge in Φ, then u is called a son of v. The size of Φ, denoted $|\Phi|$, is the number of gates in Φ. The depth of the gate v is the maximal length of a directed path reaching v. The depth of Φ is the maximal depth of a gate in Φ.

For a gate v, define Φ_{v} to be the sub-circuit of Φ rooted at v. That is, the gates of Φ_{v} are all the gates u in Φ such that there exists a directed path from u to v in Φ, and the edges and labels of Φ_{v} are the same edges and labels of Φ (restricted to the set of gates of Φ_{v}). We say that a variable $x \in X$ occurs in Φ_{v}, if x labels one of the input gates of Φ_{v}. Define X_{v} to be the set of variables that occur in Φ_{v}.

An arithmetic circuit computes a polynomial in a natural way. For a gate v in Φ, define $\widehat{\Phi}_{v} \in \mathbb{F}[X]$ to be the polynomial computed by Φ_{v} as follows: If v is an input gate labelled by $\alpha \in \mathbb{F} \cup X$, then $\widehat{\Phi}_{v}=\alpha$. If v is a product gate with sons v_{1} and v_{2}, then $\widehat{\Phi}_{v}=\widehat{\Phi}_{v_{1}} \cdot \widehat{\Phi}_{v_{2}}$. If v is a sum gate with sons v_{1} and v_{2}, then $\widehat{\Phi}_{v}=\widehat{\Phi}_{v_{1}}+\widehat{\Phi}_{v_{2}}$. For a polynomial $f \in \mathbb{F}[X]$ and a gate v in Φ, we say that v computes f, if $f=\widehat{\Phi}_{v}$. We say that Φ computes f, if one of the output gates of Φ computes f.
For a gate v, define the degree of v to be the total degree of the polynomial $\widehat{\Phi}_{v}$. We denote the degree of v by $\operatorname{deg}(v)$. The degree of Φ is the maximal degree of a gate in Φ.

A polynomial $f \in \mathbb{F}[X]$ is called multilinear, if the degree of each variable in f is at most one. An arithmetic circuit Φ is called multilinear, if every gate in Φ computes a multilinear polynomial. Φ is called syntactically multilinear, if every product gate v in Φ with sons v_{1} and v_{2} admits $X_{v_{1}} \cap X_{v_{2}}=\emptyset$.

1.2 Background

The model of multilinear arithmetic circuits was first considered in NW. It is a restricted model, as it does not allow the use of high powers of variables during a computation. However, it is a natural model for computing multilinear polynomials, as the use of high powers of variables in order to compute multilinear polynomials is often not intuitive. Furthermore, the best known circuits for many multilinear polynomials are indeed multilinear.
In R04A it is shown that every multilinear formula computing the determinant or the permanent of an n by n matrix is of size $n^{\Omega(\log (n))}$. Later [R04B used the techniques of [R04A] to prove a superpolynomial separation between multilinear formula and circuit size. Recently, RSY showed an $\Omega\left(n^{1+\varepsilon}\right)$ lower bound (for some $\varepsilon>0$) for the size of a syntactically multilinear arithmetic circuit (where n is the number of variables).

1.3 Results

Our first result is a syntactically multilinear version of VSBR]. We show that for every syntactically multilinear arithmetic circuit of size s and degree r over the field \mathbb{F} and over the set of variables X
computing the polynomial f, there exists a syntactically multilinear arithmetic circuit of size poly (s) and depth $O(\log (r) \log (s))$ over the field \mathbb{F} and over the set of variables X computing f as well (see Theorem 3.1). Basically, our proof is the same as the proof of [VSBR]. We note that the proof does not work for the multilinear model (the proof uses syntactical multilinearity).
Our second result is a simpler proof of the following result of [R04B (see Theorem 4.4): There exists a multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ such that (over every field)

1. Every multilinear arithmetic formula computing f is of size $n^{\Omega(\log (n))}$.
2. There exists a syntactically multilinear arithmetic circuit of size poly (n) and depth $O\left(\log ^{2}(n)\right)$ computing f.

To prove this super-polynomial separation between multilinear formula and circuit size, we use the techniques of [R04A, R04B] and our first result, together with a new construction of f.

1.4 Discussion

Our first result implies that for every syntactically multilinear arithmetic circuit of size poly (n), there exists a syntactically multilinear arithmetic formula of size $n^{O(\log (n))}$ computing the same polynomial. Thus, a proof of an $n^{\omega(\log (n))}$ lower bound for the size of multilinear arithmetic formulas automatically gives a super-polynomial lower bound for the size of syntactically multilinear arithmetic circuits. So, no better lower bounds than that of [R04A, R04B are available without a proof of a super-polynomial lower bound for the size of syntactically multilinear arithmetic circuits. We also recall a conjecture from [NW]: Multilinear arithmetic circuits require $\Omega(n)$ depth to compute the determinant of an n by n matrix. A proof of the conjecture automatically gives an exponential lower bound for the size of syntactically multilinear arithmetic circuits for the determinant.
As mentioned above, the proof of our first result is, basically, the same as the proof of [VSBR]. We will now discuss the proof of our second result (note that the following statements are not accurate). We find a polynomial f with properties 1 . and 2. above. The proof has two parts:
Proof of property 1. A polynomial is of full rank, if the partial derivative matrix of the polynomial is of full rank (see Section 4.2 .2 for definitions). R04B shows that small multilinear arithmetic formulas can't compute polynomials of full rank. So, to prove property 1., we show that f is of full rank.
Proof of property 2. We find a multilinear arithmetic circuit of polynomial size and linear depth computing f. Using our first result, property 2. follows. We note that R04B constructed a polynomial of full
rank that is computed explicitly by a multilinear arithmetic circuit of size poly (n) and depth $O\left(\log ^{2}(n)\right)$. Much of the complexity of $\mathrm{R04B}]$ comes from the explicitness of the small depth.

2 Preliminaries

In the following \mathbb{G} denotes a field, and $X=\left\{x_{1}, \ldots, x_{n}\right\}$ denotes a set of variables. $\mathbb{G}[X]$ denotes the ring of polynomials over the field \mathbb{G} and over the set of variables X. Arithmetic circuits are denoted by either Φ or Ψ. For an integer $n \in \mathbb{N}$, denote $[n]=\{1, \ldots, n\}$. For two integers $i \in \mathbb{N}$ and $j \in \mathbb{N}$, denote

$$
[i, j]=\{k \in \mathbb{N}: i \leq k \text { and } k \leq j\}
$$

We say that a variable occurs in a polynomial f, if the degree of the variable in f is greater than 0 . We denote by $\mathbf{V}(f)$ the set of variables that occur in f. We say that a monomial occurs in f, if the coefficient of the monomial in f is non-zero.

2.1 Homogeneous Arithmetic Circuits

A polynomial f is called homogeneous, if all the monomials that occur in f have the same total degree. For an integer $i \in \mathbb{N}$, we define the homogeneous part of degree i of f to be the restriction of f to the set of monomials of total degree i. We say that an arithmetic circuit Φ is homogeneous, if for every gate v in Φ, the polynomial $\widehat{\Phi}_{v}$ is homogeneous.

The following theorem shows that syntactically multilinear arithmetic circuits can be made homogeneous. The theorem is well known for general arithmetic circuits (e.g., NW]). Here we show that the theorem applies for the syntactically multilinear case as well.

Theorem 2.1. Let Φ be a syntactically multilinear arithmetic circuit of size s and degree r over the field \mathbb{G} and over the set of variables X computing the polynomial f. Then there exists a syntactically multilinear homogeneous arithmetic circuit Ψ of size $O\left(r^{2} s\right)$ and degree r over the field \mathbb{G} and over the set of variables X computing f as well.

Proof. For every gate v in Φ and for every $i \in[0, r]$, define the pair (v, i) as a gate in Ψ. The gate (v, i) will compute the homogeneous part of degree i of the polynomial $\widehat{\Phi}_{v}$. We will construct Ψ by induction on the structure of Φ.

Let v be a gate in Φ.
If v is an input gate, then $\widehat{\Phi}_{v}$ is a homogeneous polynomial. So for all $i \in[0, r]$, define

$$
\Psi_{(v, i)}=\left\{\begin{array}{cc}
\Phi_{v} & \operatorname{deg}(v)=i \\
0 & \operatorname{deg}(v) \neq i
\end{array}\right.
$$

Otherwise, let v_{1} and v_{2} be the two sons of v in Φ.
If v is a product gate, then for every $i \in[0, r]$, define

$$
\Psi_{(v, i)}=\sum_{j \in[0, i]} \Psi_{\left(v_{1}, j\right)} \times \Psi_{\left(v_{2}, i-j\right)}
$$

If v is a sum gate, then for every $i \in[0, r]$, define

$$
\Psi_{(v, i)}=\Psi_{\left(v_{1}, i\right)}+\Psi_{\left(v_{2}, i\right)}
$$

It follows by induction that for every gate v in Φ and for every $i \in[0, r]$, the gate (v, i) in Ψ computes the homogeneous part of degree i of $\widehat{\Phi}_{v}$. So, Ψ is homogeneous. Furthermore, it follows that

$$
X_{(v, i)} \subseteq X_{v}
$$

where $X_{(v, i)}$ is the set of variables that occur in $\Psi_{(v, i)}$, and X_{v} is the set of variables that occur in Φ_{v}. Since each gate in Φ adds at most $O\left(r^{2}\right)$ vertices to Ψ, the size of Ψ is $O\left(r^{2} s\right)$. Also the degree of Ψ is at most r.
Finally, we claim that Ψ is syntactically multilinear. Indeed, let v^{\prime} be a product gate in Ψ. So, $\Psi_{v^{\prime}}$ is of the form

$$
\Psi_{v^{\prime}}=\Psi_{\left(v_{1}, j\right)} \times \Psi_{\left(v_{2}, i-j\right)},
$$

where v_{1} and v_{2} are the two sons of a product gate v in Φ, and $i, j \in[0, r]$. Since v is a product gate in Φ and since Φ is syntactically multilinear, $X_{v_{1}} \cap X_{v_{2}}=\emptyset$. So, since $X_{\left(v_{1}, j\right)} \subseteq X_{v_{1}}$ and $X_{\left(v_{2}, i-j\right)} \subseteq X_{v_{2}}$, we have

$$
X_{\left(v_{1}, j\right)} \cap X_{\left(v_{2}, i-j\right)}=\emptyset
$$

3 Balancing Arithmetic Circuits

In this section we follow the proof of [VSBR], and show how to balance syntactically multilinear arithmetic circuits. In particular, we show that poly (n)-size syntactically multilinear arithmetic circuits are without loss of generality of depth $O\left(\log ^{2}(n)\right)$ (where n is the number of variables).

Theorem 3.1. Let Φ be a syntactically multilinear arithmetic circuit of size s and degree r over the field \mathbb{G} and over the set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ computing the polynomial f. Then there exists a syntactically multilinear arithmetic circuit Ψ of size $O\left(r^{6} s^{3}\right)$, of depth $O(\log (r) \log (s))$, and of degree r over the field \mathbb{G} and over the set of variables X computing f as well.

We defer the proof of Theorem 3.1 to Section 3.3 .

3.1 Preliminaries

In the following Φ denotes a syntactically multilinear arithmetic circuit over the field \mathbb{G} and over the set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$. For a gate v in Φ, we denote

$$
f_{v}=\widehat{\Phi}_{v} \in \mathbb{G}[X],
$$

the polynomial computed by v in Φ.

3.1.1 Non-redundant Circuits

We say that Φ is non-redundant, if every gate v in Φ admits $f_{v} \neq 0$.
Claim 3.2. Let Φ be a homogeneous non-redundant arithmetic circuit over the field \mathbb{G} and over the set of variables X. Let v be a sum gate in Φ with sons v_{1} and v_{2}. Then,

$$
\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}(v)
$$

Proof. Since Φ is non-redundant, all the polynomials $f_{v}, f_{v_{1}}$ and $f_{v_{2}}$ are non-zero. Since Φ is homogeneous, all the polynomials $f_{v}, f_{v_{1}}$ and $f_{v_{2}}$ are homogeneous. So, since $f_{v}=f_{v_{1}}+f_{v_{2}}$, the claim follows.

3.1.2 The Partial Derivative of f_{v} by w

For two gates v and w in Φ such that $X_{w} \neq \emptyset$, we define $\partial_{w} f_{v}$, the partial derivative of f_{v} by w, as follows: Substitute the gate w in Φ by a new variables y, and denote by f_{v}^{\prime} the 'new' polynomial computed by v. So, f_{v}^{\prime} is a polynomial in $\mathbb{G}[y, X]$. Since Φ is syntactically multilinear, and since $X_{w} \neq \emptyset, f_{v}^{\prime}$ is linear in y; that is,

$$
f_{v}^{\prime}=h_{w, v} \cdot y+g_{w, v}
$$

where $h_{w, v}$ and $g_{w, v}$ are polynomials in $\mathbb{G}[X]$. So, $f_{v}=h_{w, v} \cdot f_{w}+g_{w, v}$, and we define

$$
\partial_{w} f_{v}=h_{w, v}\left(=\frac{\partial f_{v}^{\prime}}{\partial y}\right) .
$$

We shall use the following properties of $\partial_{w} f_{v}$.
Claim 3.3. Let Φ be a syntactically multilinear homogeneous non-redundant arithmetic circuit over the field \mathbb{G} and over the set of variables X. Let v and w be two gates in Φ such that $X_{w} \neq \emptyset$ and $\partial_{w} f_{v} \neq 0$. Then, $\partial_{w} f_{v}$ is a homogeneous polynomial over the set of variables $X_{v} \backslash X_{w}$ of total degree $\operatorname{deg}(v)-\operatorname{deg}(w)$.

Proof. We will use the following claim, which follows by induction. Let Ψ be a homogeneous arithmetic circuit, and let Ψ^{\prime} be the arithmetic circuit obtained from Ψ by substituting a gate in Ψ by 0 . Then, for every gate u in $\Psi^{\prime}(u$ is also a gate in $\Psi)$, the polynomial $\widehat{\Psi}_{u}^{\prime}$ is either 0 or homogeneous of the same degree as $\widehat{\Psi}_{u}$.

Since Φ is homogeneous, the polynomials f_{v} and f_{w} are homogenous. Furthermore, since $g_{w, v}$ is the polynomial computed by v after substituting w by 0 , it follows that $g_{w, v}$ is either 0 or homogenous of degree $\operatorname{deg}(v)$. Since Φ is non-redundant, $f_{w} \neq 0$. So, since $\partial_{w} f_{v} \cdot f_{w}=f_{v}-g_{w, v}$, and since $\partial_{w} f_{v} \neq 0$, we have that $\partial_{w} f_{v}$ is a homogenous polynomial of total degree $\operatorname{deg}(v)-\operatorname{deg}(w)$.
Let $x \in X$ be a variable that occurs in $\partial_{w} f_{v}$. By the definition of $\partial_{w} f_{v}$, there exists a product gate u in Φ with sons u_{1} and u_{2} such that (without loss of generality) $x \in X_{u_{1}}$ and w is in $\Phi_{u_{2}}$. Note that $X_{w} \subseteq X_{u_{2}}$. Since Φ is syntactically multilinear, $X_{u_{1}} \cap X_{u_{2}}=\emptyset$. So, the set of variables that occur in $\partial_{w} f_{v}$ and X_{w} are disjoint.

Claim 3.4. Let Φ be a syntactically multilinear homogeneous non-redundant arithmetic circuit over the field \mathbb{G} and over the set of variables X. Let v and w be two gates in Φ such that $X_{w} \neq \emptyset$, and

$$
\operatorname{deg}(v)<2 \operatorname{deg}(w)
$$

Assume that v is a product gate with sons v_{1} and v_{2} such that $\operatorname{deg}\left(v_{1}\right) \geq \operatorname{deg}\left(v_{2}\right)$. Then,

$$
\partial_{w} f_{v}=f_{v_{2}} \cdot \partial_{w} f_{v_{1}} .
$$

Proof. Since v is a product gate, $\operatorname{deg}(v)=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)$. So, since $\operatorname{deg}(v)<2 \operatorname{deg}(w)$, we have $\operatorname{deg}\left(v_{2}\right)<\operatorname{deg}(w)$, which implies (by Claim 3.3) that $\partial_{w} f_{v_{2}}=0$. So, by the rules of partial derivatives,

$$
\partial_{w} f_{v}=f_{v_{1}} \cdot \partial_{w} f_{v_{2}}+f_{v_{2}} \cdot \partial_{w} f_{v_{1}}=f_{v_{2}} \cdot \partial_{w} f_{v_{1}} .
$$

3.2 Representing f_{v} and $\partial_{w} f_{v}$ Differently

In this section we prove two claims that are the main tool in the proof of Theorem 3.1.
For an integer $m \in \mathbb{N}$, denote by \mathbf{G}_{m} the set of product gates t in Φ with sons t_{1} and t_{2} such that

$$
m<\operatorname{deg}(t) \text { and } \operatorname{deg}\left(t_{1}\right) \leq m \text { and } \operatorname{deg}\left(t_{2}\right) \leq m
$$

For a gate v, the following claim shows how to represent f_{v} as a function of the gates in \mathbf{G}_{m} (for the appropriate m).

Claim 3.5. Let Φ be a syntactically multilinear homogeneous non-redundant arithmetic circuit over the field \mathbb{G} and over the set of variables X. Let $m>0$ be an integer, and let v be a gate in Φ such that $m<\operatorname{deg}(v) \leq 2 m$. Then,

$$
f_{v}=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot \partial_{t} f_{v}
$$

(since $m>0$, every $t \in \mathbf{G}_{m}$ admits $X_{t} \neq \emptyset$).

Proof. Since $m<\operatorname{deg}(v)$, there is a directed path from \mathbf{G}_{m} to v in Φ. We prove the claim by induction on the length of the longest directed path from \mathbf{G}_{m} to v. Let v_{1} and v_{2} be the two sons of v in Φ.

Induction Base: Assume that $v \in \mathbf{G}_{m}$. Thus, $\operatorname{deg}\left(v_{1}\right) \leq m$ and $\operatorname{deg}\left(v_{2}\right) \leq m$. So, every $t \in \mathbf{G}_{m}$ different than v is not in Φ_{v}, which implies $\partial_{t} f_{v}=0$. Hence, since $\partial_{v} f_{v}=1$,

$$
f_{v}=f_{v} \cdot 1+\sum_{t \in \mathbf{G}_{m}: t \neq v} f_{t} \cdot 0=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot \partial_{t} f_{v} .
$$

Induction Step: Consider the following two cases:
Case one: Assume that v is a sum gate. By Claim 3.2,

$$
\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}(v)
$$

So, by induction,

$$
f_{v_{1}}=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot \partial_{t} f_{v_{1}} \text { and } f_{v_{2}}=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot \partial_{t} f_{v_{2}} .
$$

Hence, by the rules of partial derivatives,

$$
f_{v}=f_{v_{1}}+f_{v_{2}}=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot\left(\partial_{t} f_{v_{1}}+\partial_{t} f_{v_{2}}\right)=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot \partial_{t} f_{v}
$$

Case two: Assume that v is a product gate, and assume without loss of generality that $\operatorname{deg}\left(v_{1}\right) \geq \operatorname{deg}\left(v_{2}\right)$. Since $v \notin \mathbf{G}_{m}$, we have $m<\operatorname{deg}\left(v_{1}\right) \leq 2 m$. So, by induction,

$$
f_{v_{1}}=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot \partial_{t} f_{v_{1}}
$$

For all gates $t \in \mathbf{G}_{m}$, we have $\operatorname{deg}(v) \leq 2 m<2 \operatorname{deg}(t)$. So, using Claim 3.4,

$$
f_{v}=f_{v_{1}} \cdot f_{v_{2}}=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot\left(f_{v_{2}} \cdot \partial_{t} f_{v_{1}}\right)=\sum_{t \in \mathbf{G}_{m}} f_{t} \cdot \partial_{t} f_{v} .
$$

For a gate v in Φ, the following claim shows how to represent $\partial_{w} f_{v}$ as a function of the gates in \mathbf{G}_{m} (for the appropriate choice of w and m).

Claim 3.6. Let Φ be a syntactically multilinear homogeneous non-redundant arithmetic circuit over the field \mathbb{G} and over the set of variables X. Let $m>0$ be an integer, and let w be a gate in Φ such that $X_{w} \neq \emptyset$ and $\operatorname{deg}(w) \leq m<2 \operatorname{deg}(w)$. Let v be a gate in Φ such that $m<\operatorname{deg}(v)<2 \operatorname{deg}(w)$. Then,

$$
\partial_{w} f_{v}=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot \partial_{t} f_{v}
$$

(since $m>0$, every $t \in \mathbf{G}_{m}$ admits $X_{t} \neq \emptyset$).

Proof. Since $m<\operatorname{deg}(v)$, there is a directed path from \mathbf{G}_{m} to v in Φ. We prove the claim by induction on the length of the longest directed path from \mathbf{G}_{m} to v. Let v_{1} and v_{2} be the two sons of v in Φ.

Induction Base: Assume that $v \in \mathbf{G}_{m}$. Thus, $\operatorname{deg}\left(v_{1}\right) \leq m$ and $\operatorname{deg}\left(v_{2}\right) \leq m$. So, every gate t in \mathbf{G}_{m} different than v is not in Φ_{v}, which implies $\partial_{t} f_{v}=0$. Hence, since $\partial_{v} f_{v}=1$,

$$
\partial_{w} f_{v}=\partial_{w} f_{v} \cdot 1+\sum_{t \in \mathbf{G}_{m}: t \neq v} \partial_{w} f_{t} \cdot 0=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot \partial_{t} f_{v}
$$

Induction Step: Consider the following two cases:
Case one: Assume that v is a sum gate. By Claim 3.2,

$$
\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}(v)
$$

So, by induction,

$$
\partial_{w} f_{v_{1}}=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot \partial_{t} f_{v_{1}} \text { and } \partial_{w} f_{v_{2}}=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot \partial_{t} f_{v_{2}}
$$

Hence, using the rules of partial derivatives,

$$
\partial_{w} f_{v}=\partial_{w} f_{v_{1}}+\partial_{w} f_{v_{2}}=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot\left(\partial_{t} f_{v_{1}}+\partial_{t} f_{v_{2}}\right)=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot \partial_{t} f_{v}
$$

Case two: Assume that v is a product gate, and assume without loss of generality that $\operatorname{deg}\left(v_{1}\right) \geq \operatorname{deg}\left(v_{2}\right)$. Since $v \notin \mathbf{G}_{m}$, we have $m<\operatorname{deg}\left(v_{1}\right)<2 \operatorname{deg}(w)$. So, by induction,

$$
\partial_{w} f_{v_{1}}=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot \partial_{t} f_{v_{1}}
$$

Note that $\operatorname{deg}(v)<2 \operatorname{deg}(w)$, and for all gates $t \in \mathbf{G}_{m}$, we have $\operatorname{deg}(v)<2 m<2 \operatorname{deg}(t)$. So, using Claim 3.4,

$$
\partial_{w} f_{v}=f_{v_{2}} \cdot \partial_{w} f_{v_{1}}=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot\left(f_{v_{2}} \cdot \partial_{t} f_{v_{1}}\right)=\sum_{t \in \mathbf{G}_{m}} \partial_{w} f_{t} \cdot \partial_{t} f_{v}
$$

3.3 Proof of Theorem 3.1

First, we assume without loss of generality that $s \geq n$. Second, using Theorem 2.1, we assume without loss of generality that Φ is a homogeneous arithmetic circuit of size $s^{\prime}=O\left(r^{2} s\right)$. Third, we assume without loss of generality that Φ is non-redundant (otherwise, we can make Φ smaller). Note that Φ 'remains' syntactically multilinear.
To prove the theorem we construct Ψ. The construction is done in steps. For an integer $i \geq 0$, at the i 'th step we have the following

1. We compute all polynomials f_{v}, for gates v in Φ such that $2^{i-1}<\operatorname{deg}(v) \leq 2^{i}$. To compute f_{v} we add $O\left(s^{\prime}\right)$ gates, and we increase the depth by $O\left(\log \left(s^{\prime}\right)\right)$.
2. We compute all polynomials $\partial_{w} f_{v}$, for gates v and w in Φ such that $X_{w} \neq 0$,

$$
2^{i-1}<\operatorname{deg}(v)-\operatorname{deg}(w) \leq 2^{i} \text { and } \operatorname{deg}(v)<2 \operatorname{deg}(w)
$$

To compute $\partial_{w} f_{v}$ we add $O\left(s^{\prime}\right)$ gates, and we increase the depth by $O\left(\log \left(s^{\prime}\right)\right)$.
3. All the product gates added 'multiply' disjoint sets of variables; that is, every product gate u in Ψ with sons u_{1} and u_{2} admits $X_{u_{1}} \cap X_{u_{2}}=\emptyset$.

Before describing the construction we show why it completes the proof. Since the degree of Φ is r, the total degree of f is at most r. So, we can end the process in $O(\log (r))$ steps. Since in each step we increase the depth by at most $O\left(\log \left(s^{\prime}\right)\right)$, the depth of Ψ is $O(\log (r) \log (s))$ (note that $\left.r \leq n \leq s\right)$. Since for each gate v in Φ, we add $O\left(s^{\prime}\right)$ gates to compute f_{v}, and since for each pair of gates v and w (with the appropriate properties), we add $O\left(s^{\prime}\right)$ gates to compute $\partial_{w} f_{v}$, it follows that the size of Ψ is $O\left(s^{\prime 3}\right)=O\left(r^{6} s^{3}\right)$. Finally, by $3 ., \Psi$ is syntactically multilinear.

The Construction of Ψ

We use the following conventions: Gates in Φ are denoted by v, t and w. For a gate v, we denote by v^{\prime} the gate in Ψ computing f_{v}. For two gates v and w in Φ such that $X_{w} \neq \emptyset$ and $\operatorname{deg}(v)<2 \operatorname{deg}(w)$, we denote by (w, v) the gate in Ψ computing $\partial_{w} f_{v}$.
Throughout the process we maintain the following two properties:
A For every gate v in Φ,

$$
X_{v^{\prime}} \subseteq X_{v}
$$

where $X_{v^{\prime}}$ is the set of variables that occur in $\Psi_{v^{\prime}}$, and X_{v} is the set of variables that occur in Φ_{v}.

B For every two gates v and w in Φ such that $X_{w} \neq \emptyset$ and $\operatorname{deg}(v)<2 \operatorname{deg}(w)$,

$$
X_{(w, v)} \subseteq X_{v} \backslash X_{w},
$$

where $X_{(w, v)}$ is the set of variables that occur in $\Psi_{(w, v)}, X_{v}$ is the set of variables that occur in Φ_{v}, and X_{w} is the set of variables that occur in Φ_{w}.

Step 0: For every gate v in Φ such that $\operatorname{deg}(v) \leq 1$, the polynomial f_{v} is linear. So, since $s^{\prime} \geq n$, we can compute f_{v} with an arithmetic circuit of size $O\left(s^{\prime}\right)$ and depth $O\left(\log \left(s^{\prime}\right)\right)$. Furthermore, we can have $X_{v^{\prime}} \subseteq X_{v}$ (property \mathbf{A}).

For every two gates v and w in Φ such that $X_{w} \neq \emptyset$ and $\operatorname{deg}(v)-\operatorname{deg}(w) \leq 1$, using Claim 3.3, we have that $\partial_{w} f_{v}$ is linear. So, we can compute $\partial_{w} f_{v}$ with an arithmetic circuit of size $O\left(s^{\prime}\right)$ and depth $O\left(\log \left(s^{\prime}\right)\right)$. Furthermore, by Claim 3.3, the set of variables that occur in $\partial_{w} f_{v}$ is a subset of $X_{v} \backslash X_{w}$, so we can have $X_{(w, v)} \subseteq X_{v} \backslash X_{w}$ (property B).
Step i+1: Assume that we already computed all polynomials f_{v}, for gates v such that $\operatorname{deg}(v) \leq 2^{i}$, and all polynomials $\partial_{w} f_{v}$, for gates v and w such that $X_{w} \neq \emptyset, \operatorname{deg}(v)-\operatorname{deg}(w) \leq 2^{i}$ and $\operatorname{deg}(v) \leq 2 \operatorname{deg}(w)$. Furthermore, assume that properties \mathbf{A} and \mathbf{B} hold so far.

Recall that for an integer $m \in \mathbb{N}$, we defined \mathbf{G}_{m} to be the set of product gates t in Φ with sons t_{1} and t_{2} such that

$$
m<\operatorname{deg}(t) \text { and } \operatorname{deg}\left(t_{1}\right) \leq m \text { and } \operatorname{deg}\left(t_{2}\right) \leq m
$$

The $i+1$ step is done in two parts:

First part: computing f_{v}.

Let v be a gate of degree $2^{i}<\operatorname{deg}(v) \leq 2^{i+1}$, and denote

$$
m=2^{i} .
$$

Recall that if a gate t is not in Φ_{v}, then $\partial_{t} f_{v}=0$. Thus, by Claim 3.5,

$$
f_{v}=\sum_{t \in T} f_{t} \cdot \partial_{t} f_{v}=\sum_{t \in T} f_{t_{1}} \cdot f_{t_{2}} \cdot \partial_{t} f_{v}
$$

where T is the set of gates $t \in \mathbf{G}_{m}$ with sons t_{1} and t_{2} such that t is in Φ_{v}.
Let $t \in T$ be a gate with sons t_{1} and t_{2}. Thus, $m<\operatorname{deg}(t) \leq 2 m, \operatorname{deg}\left(t_{1}\right) \leq m$ and $\operatorname{deg}\left(t_{2}\right) \leq m$. So, $\operatorname{deg}(v)-\operatorname{deg}(t) \leq 2^{i+1}-2^{i}=2^{i}$ and $\operatorname{deg}(v) \leq 2^{i+1}<2 \operatorname{deg}(t)$. Therefore, $f_{t_{1}}, f_{t_{2}}$ and $\partial_{t} f_{v}$ are already
computed. Thus, to compute f_{v} (using the polynomials computed so far) we add $O\left(s^{\prime}\right)$ gates, and we increase the depth by at most $O\left(\log \left(s^{\prime}\right)\right)$.
We will now show that property A still holds. Indeed, recall that

$$
X_{t_{1}^{\prime}} \subseteq X_{t_{1}} \text { and } X_{t_{2}^{\prime}} \subseteq X_{t_{2}} \text { and } X_{(t, v)} \subseteq X_{v} \backslash X_{t}
$$

Since t is in Φ_{v},

$$
X_{t_{1}} \cup X_{t_{2}}=X_{t} \subseteq X_{v}
$$

Thus,

$$
X_{v^{\prime}}=\bigcup_{t \in T} X_{t_{1}^{\prime}} \cup X_{t_{2}^{\prime}} \cup X_{(t, v)} \subseteq X_{v}(\text { property } \mathbf{A})
$$

Finally, we claim that every product gate added 'multiplies' disjoint sets of variables. Indeed, a product gate added is of the form $f_{t_{1}} \cdot f_{t_{2}} \cdot \partial_{t} f_{v}$, where $t \in T$ is product a gate with sons t_{1} and t_{2}. Since Φ is syntactically multilinear, $X_{t_{1}} \cap X_{t_{2}}=\emptyset$. So,

$$
X_{t_{1}^{\prime}} \cap X_{t_{2}^{\prime}}=\emptyset \quad \text { and } \quad X_{(t, v)} \cap\left(X_{t_{1}^{\prime}} \cup X_{t_{2}^{\prime}}\right)=\emptyset
$$

Second part: computing $\partial_{w} f_{v}$.

Let v and w be two gates in Φ such that $X_{w} \neq \emptyset$,

$$
2^{i}<\operatorname{deg}(v)-\operatorname{deg}(w) \leq 2^{i+1} \text { and } \operatorname{deg}(v)<2 \operatorname{deg}(w)
$$

Now, denote

$$
m=2^{i}+\operatorname{deg}(w)
$$

Thus, $\operatorname{deg}(w) \leq m<\operatorname{deg}(v)<2 \operatorname{deg}(w)$. Recall that if a gate t is not in Φ_{v}, then $\partial_{t} f_{v}=0$. Also, by Claim 3.3, if a gate t admits $\operatorname{deg}(t)>\operatorname{deg}(v)$, then $\partial_{t} f_{v}=0$. Hence, by Claim 3.6,

$$
\partial_{w} f_{v}=\sum_{t \in T} \partial_{w} f_{t} \cdot \partial_{t} f_{v}
$$

where T is the set of gates $t \in \mathbf{G}_{m}$ such that t is in Φ_{v} and $\operatorname{deg}(t) \leq \operatorname{deg}(v)$. For a gate $t \in T$, we have $\operatorname{deg}(t) \leq \operatorname{deg}(v)<2 \operatorname{deg}(w)$. Hence, using Claim 3.4, we have

$$
\partial_{w} f_{v}=\sum_{t \in T} f_{t_{2}} \cdot \partial_{w} f_{t_{1}} \cdot \partial_{t} f_{v},
$$

where for all $t \in T$, we denote its sons by t_{1} and t_{2}, where (without loss of generality) w is in $\Phi_{t_{1}}$, $\operatorname{deg}(w) \leq \operatorname{deg}\left(t_{1}\right)$ and $\operatorname{deg}\left(t_{1}\right) \geq \operatorname{deg}\left(t_{2}\right)$.
Let $t \in T$ be a gate with sons t_{1} and t_{2}. We will now show that all the polynomials $f_{t_{2}}, \partial_{w} f_{t_{1}}$ and $\partial_{t} f_{v}$ are already computed (including the first part of the $i+1$ step).

Since

$$
\operatorname{deg}(v) \leq 2^{i+1}+\operatorname{deg}(w) \leq 2^{i+1}+\operatorname{deg}\left(t_{1}\right)=2^{i+1}+\operatorname{deg}(t)-\operatorname{deg}\left(t_{2}\right)
$$

we have

$$
\operatorname{deg}\left(t_{2}\right) \leq 2^{i+1}+\operatorname{deg}(t)-\operatorname{deg}(v) \leq 2^{i+1}
$$

So, $f_{t_{2}}$ is already computed (including in the first part of the $i+1$ step).
Since $\operatorname{deg}\left(t_{1}\right) \leq m=2^{i}+\operatorname{deg}(w)$, we have $\operatorname{deg}\left(t_{1}\right)-\operatorname{deg}(w) \leq 2^{i}$. So, since $\operatorname{deg}\left(t_{1}\right) \leq \operatorname{deg}(t) \leq \operatorname{deg}(v)<$ $2 \operatorname{deg}(w)$, the polynomial $\partial_{w} f_{t_{1}}$ is already computed.
Since $\operatorname{deg}(t)>m=2^{i}+\operatorname{deg}(w)$, we have

$$
\operatorname{deg}(v)-\operatorname{deg}(t)<\operatorname{deg}(v)-2^{i}-\operatorname{deg}(w) \leq 2^{i+1}-2^{i}=2^{i}
$$

So, since

$$
\operatorname{deg}(v) \leq 2^{i+1}+\operatorname{deg}(w) \leq 2\left(2^{i}+\operatorname{deg}(w)\right)<2 \operatorname{deg}(t)
$$

the polynomial $\partial_{t} f_{v}$ is already computed.
Thus, to compute $\partial_{w} f_{v}$ (using the polynomials computed so far) we add $O\left(s^{\prime}\right)$ gates, and we increase the depth by $O\left(\log \left(s^{\prime}\right)\right)$.
We will now show that property \mathbf{B} still holds. Let $t \in T$ be a gate with sons t_{1} and t_{2}. Recall that

$$
X_{t_{2}^{\prime}} \subseteq X_{t_{2}} \text { and } X_{\left(w, t_{1}\right)} \subseteq X_{t_{1}} \backslash X_{w} \text { and } X_{(t, v)} \subseteq X_{v} \backslash X_{t}
$$

Since Φ is syntactically multilinear,

$$
X_{t_{1}} \cap X_{t_{2}}=\emptyset
$$

Since t is in Φ_{v},

$$
X_{t_{1}} \cup X_{t_{2}}=X_{t} \subseteq X_{v}
$$

Since w is in $\Phi_{t_{1}}$,

$$
X_{w} \subseteq X_{t_{1}}
$$

So,

$$
X_{(w, v)}=\bigcup_{t \in T} X_{t_{2}^{\prime}} \cup X_{\left(w, t_{1}\right)} \cup X_{(t, v)} \subseteq X_{v} \backslash X_{w}(\text { property } \mathbf{B})
$$

Finally, we claim that every product gate added 'multiplies' disjoint sets of variables. Indeed, a product gate added in the second part is of the form $f_{t_{2}} \cdot \partial_{w} f_{t_{1}} \cdot \partial_{t} f_{v}$, where $t \in T$ is a gate with sons t_{1} and t_{2}. Thus,

$$
X_{t_{2}^{\prime}} \cap X_{\left(w, t_{1}\right)}=\emptyset \quad \text { and } \quad\left(X_{t_{2}^{\prime}} \cup X_{\left(w, t_{1}\right)}\right) \cap X_{(t, v)}=\emptyset .
$$

4 Separation Between Multilinear Formula and Circuit Size

In this section we show a super-polynomial separation between multilinear arithmetic formula and circuit size. More specifically, we give an explicit polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ such that

1. Every multilinear arithmetic formula computing f is of size $n^{\Omega(\log (n))}$.
2. There exists a syntactically multilinear arithmetic circuit of $O\left(\log ^{2}(n)\right)$-depth and poly (n)-size computing f.

Such a separation was already proved in R04B. We use the fact that syntactically multilinear arithmetic circuits can be balanced in order to simplify the construction of f, and the proof.

4.1 The Definition of f

Let $n \in \mathbb{N}$ be an integer. Let $X=\left\{x_{1}, \ldots, x_{2 n}\right\}$ and $\mathcal{W}=\left\{\omega_{i, \ell, j}\right\}_{i, \ell, j \in[2 n]}$ be two sets of variables. Recall that for two integers $i \in \mathbb{N}$ and $j \in \mathbb{N}$, we denote $[i, j]=\{k \in \mathbb{N}: i \leq k$ and $k \leq j\}$. We call $[i, j]$ an interval. We call $|[i, j]|$ the length of the interval $[i, j]$. Note that for $j<i$, the interval $[i, j]=\emptyset$ is of even length. Denote by $X_{i, j}$ the set of variables x_{m}, where $m \in[i, j]$. Denote by $\mathcal{W}_{i, j}$ the set of variables $w_{i^{\prime}, \ell, j^{\prime}}$, where $i^{\prime}, \ell, j^{\prime} \in[i, j]$.
For every interval $[i, j] \subseteq[2 n]$ of even length, we define a polynomial $f_{i, j} \in \mathbb{F}[X, \mathcal{W}]$ inductively as follows: If the length of $[i, j]$ is 0 , then define

$$
f_{i, j}=1 .
$$

If the length of $[i, j]$ is greater than 0 , then define

$$
f_{i, j}=\left(1+x_{i} x_{j}\right) f_{i+1, j-1}+\sum_{\ell} \omega_{i \ell,, j} f_{i, \ell} f_{\ell+1, j}
$$

where the sum is over $\ell \in[i+1, j-2]$ such that the interval $[i, \ell]$ is of even length (so, the length of $[\ell+1, j]$ is even as well). Since the lengths of the intervals $[i, \ell]$ and $[\ell+1, j]$ are even and smaller than the length of $[i, j]$, both $f_{i, \ell}$ and $f_{\ell+1, j}$ are already defined. Similarly, $f_{i+1, j-1}$ is already defined.

Finally, we define

$$
f=f_{1,2 n}
$$

Let $[i, j] \subseteq[2 n]$ be an interval of even length. Recall that $\mathbf{V}\left(f_{i, j}\right)$ is the set of X and \mathcal{W} variables that occur in $f_{i, j}$. By induction, we have

$$
\begin{equation*}
\mathbf{V}\left(f_{i, j}\right) \subseteq X_{i, j} \cup \mathcal{W}_{i, j} \tag{4.1}
\end{equation*}
$$

So, by the definition of f, there exists a syntactically multilinear arithmetic circuit of size $\operatorname{poly}(n)$ computing f. In particular, f is multilinear. We note that it will be useful to think of f also as a polynomial in $\mathbb{G}[X]$, where $\mathbb{G}=\mathbb{F}(\mathcal{W})$ is the field of rational functions over the field \mathbb{F} and over the set of variables \mathcal{W}.

4.2 Preliminaries

4.2.1 Partitions of the Set of Variables

Let $X=\left\{x_{1}, \ldots, x_{2 n}\right\}, Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ be three sets of variables. We call a one-to-one mapping $A: X \rightarrow Y \cup Z$ a partition of X to Y and Z. When X, Y and Z are clear, we call A a partition. For a polynomial $g \in \mathbb{G}[X]$, we denote by g^{A} the polynomial g, after substituting each $x \in X$ by $A(x) \in Y \cup Z$. So, $g^{A} \in \mathbb{G}[Y, Z]$.

4.2.2 The Partial Derivative Matrix

Let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ be two sets of variables. Let $g \in \mathbb{G}[Y, Z]$ be a multilinear polynomial over the field \mathbb{G} and the two sets of variables Y and Z. A monomial whose coefficient is 1 is called a monic monomial. Define M_{g}, the partial derivative matrix of g, as follows: for p a monic multilinear monomial in Y and q a monic multilinear monomial in Z, define $M_{g}(p, q)$ to be the coefficient
of the monomial $p \cdot q$ in g. Thus, the rows of M_{g} correspond to monic multilinear monomials in Y, and the columns of M_{g} correspond to monic multilinear monomials in Z. The size of M_{g} is $2^{n} \times 2^{n}$.
We say that the polynomial g is of full rank, if for every partition A of $X=\left\{x_{1}, \ldots, x_{2 n}\right\}$ to Y and Z, the rank of $M_{g^{A}}$ is full.
[R04A, R04B] proved the following theorem, which shows that a polynomial-size multilinear formula can't compute a polynomial of full rank.

Theorem 4.1. Let Φ be a multilinear arithmetic formula over the field \mathbb{G} and over the set of variables $X=\left\{x_{1}, \ldots, x_{2 n}\right\}$ computing a polynomial g. If g is of full rank, then

$$
|\Phi| \geq n^{\Omega(\log (n))}
$$

Having Theorem 4.1 in mind, to prove a super-polynomial separation between multilinear formula and circuit size, it is enough to find a full rank polynomial that is computed by a polynomial-size multilinear arithmetic circuit.

$4.3 f$ is of Full Rank

In this section we prove that f is of full rank.
Theorem 4.2. Let $n \in \mathbb{N}$ be an integer. Let $X=\left\{x_{1}, \ldots, x_{2 n}\right\}$ and $\mathcal{W}=\left\{\omega_{i, \ell, j}\right\}_{i, \ell, j \in[2 n]}$ be two sets of variables. Let $\mathbb{G}=\mathbb{F}(\mathcal{W})$ be the field of rational functions over the field \mathbb{F} and over the set of variables \mathcal{W}. Let $f \in \mathbb{G}[X]$ be the polynomial defined in Section 4.1. Then f is of full rank (over the field \mathbb{G}).

To prove Theorem 4.2 we shall need some definitions, and Lemma 4.3. Recall that a partition A of $X=\left\{x_{1}, \ldots, x_{2 n}\right\}$ to $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ is a one-to-one mapping from X to $Y \cup Z$. For a partition A and an interval $[i, j] \subseteq[2 n]$, define

$$
\mathcal{D}_{i, j}(A)=\left|A\left(X_{i, j}\right) \cap Y\right|-\left|A\left(X_{i, j}\right) \cap Z\right|
$$

We say that the interval $[i, j]$ is balanced on A, if $\mathcal{D}_{i, j}(A)=0$.
The following lemma shows that for every interval $[i, j] \subseteq[2 n]$ that is balanced on A, the polynomial $f_{i, j}^{A}$ is of full rank.

Lemma 4.3. Let $n \in \mathbb{N}$ be an integer. Let $X=\left\{x_{1}, \ldots, x_{2 n}\right\}, \mathcal{W}=\left\{\omega_{i, \ell, j}\right\}_{i, \ell, j \in[2 n]}, Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ be four sets of variables. Let A be a partition of X to Y and Z. Let $\mathbb{G}=\mathbb{F}(\mathcal{W})$ be the field of rational functions over the field \mathbb{F} and over the set of variables \mathcal{W}. Let $m \in[0, n]$ and let $[i, j] \subseteq[2 n]$ be an interval of length $2 m$ that is balanced on A. Let $f_{i, j} \in \mathbb{G}[X]$ be the polynomial defined in Section 4.1. Then

$$
\operatorname{Rank}\left(M_{f_{i, j}^{A}}\right)=2^{m},
$$

where the rank is over the field \mathbb{G}.
Proof of Theorem 4.2. Let A be a partition of X to $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n}\right\}$. Thus, the interval $[1,2 n]$ is balanced on A. So, by Lemma 4.3, the partial derivative matrix of f^{A} is of full rank.

4.3.1 Proof of Lemma 4.3

The proof is by induction on m.
Induction Base: If $m=0$, then $f_{i, j}=1$, which implies

$$
\operatorname{Rank}\left(M_{f_{i, j}^{A}}\right)=1=2^{m}
$$

Induction Step: Assume that $m>0$ and that the lemma holds for every interval of length smaller than 2 m . Consider the following two cases:

Case one: For every $\ell \in[i+1, j-2]$ such that the interval $[i, \ell]$ is of even length, we have $\mathcal{D}_{i, \ell}(A) \neq 0$. Note that if an interval is balanced on A, then the interval is of even length. Thus, for every $\ell \in[i+1, j-1]$, we have $\mathcal{D}_{i, \ell}(A) \neq 0$.

Assume without loss of generality that $\mathcal{D}_{i, i}(A)=1$ (the case $\mathcal{D}_{i, i}(A)=-1$ is similar). For every $\ell \in[i+1, j-1]$, we have

$$
\mathcal{D}_{i, \ell}(A)-\mathcal{D}_{i, \ell+1}(A) \in\{1,-1\} .
$$

So for all $\ell \in[i+1, j-1]$, we have $\mathcal{D}_{i, \ell}(A)>0$. Hence, since $\mathcal{D}_{i, j}(A)=0$, we have $\mathcal{D}_{j, j}(A)=-1$. Therefore, the interval $[i+1, j-1]$ is balanced on A. Thus, by induction,

$$
\operatorname{Rank}\left(M_{f_{i+1, j-1}^{A}}\right)=2^{m-1}
$$

Since $\mathcal{D}_{i, i}=1$ and $\mathcal{D}_{j, j}=-1$,

$$
\operatorname{Rank}\left(M_{1+A\left(x_{i}\right) A\left(x_{j}\right)}\right)=2 .
$$

Since, by 4.1), both x_{i} and x_{j} do not occur in $f_{i+1, j-1}$,

$$
\begin{equation*}
M_{\left(1+A\left(x_{i}\right) A\left(x_{j}\right)\right) f_{i+1, j-1}^{A}}=M_{1+A\left(x_{i}\right) A\left(x_{j}\right)} \otimes M_{f_{i+1, j-1}^{A}} \tag{4.2}
\end{equation*}
$$

where we think of $M_{\left(1+A\left(x_{i}\right) A\left(x_{j}\right)\right) f_{i+1, j-1}^{A}}$ as a $2^{m} \times 2^{m}$ matrix, we think of $M_{1+A\left(x_{i}\right) A\left(x_{j}\right)}$ as a 2×2 matrix, we think of $M_{f_{i+1, j-1}^{A}}$ as a $2^{m-1} \times 2^{m-1}$ matrix, and \otimes denotes tensor product of matrices. Therefore,

$$
\operatorname{Rank}\left(M_{\left(1+A\left(x_{i}\right) A\left(x_{j}\right)\right) f_{i+1, j-1}^{A}}\right)=\operatorname{Rank}\left(M_{1+A\left(x_{i}\right) A\left(x_{j}\right)}\right) \cdot \operatorname{Rank}\left(M_{f_{i+1, j-1}^{A}}\right)=2^{m} .
$$

Recall that by (4.1), for all $\ell \in[i+1, j-1]$, the variable $\omega_{i, \ell, j}$ does not occur in $f_{i+1, j-1}$. Thus, substituting $\omega_{i, \ell, j}=0$, for all $\ell \in[i+1, j-1]$, in $f_{i, j}^{A}$, we have

$$
\left.f_{i, j}^{A}\right|_{\omega_{i, \ell, j}=0 \quad \forall \in[i+1, j-1]}=\left(1+A\left(x_{i}\right) A\left(x_{j}\right)\right) f_{i+1, j-1}^{A},
$$

which implies

$$
\operatorname{Rank}\left(M_{f_{i, j}^{A}}\right) \geq \operatorname{Rank}\left(M_{\left(1+A\left(x_{i}\right) A\left(x_{j}\right)\right) f_{i+1, j-1}^{A}}\right)
$$

Therefore, since $\operatorname{Rank}\left(M_{f_{i, j}^{A}}\right) \leq 2^{m}$,

$$
\operatorname{Rank}\left(M_{f_{i, j}^{A}}\right)=2^{m}
$$

Case two: There exists $\ell^{\prime} \in[i+1, j-2]$ such that the interval $\left[i, \ell^{\prime}\right]$ is of even length and $\mathcal{D}_{i, \ell^{\prime}}(A)=0$. The interval $\left[\ell^{\prime}+1, j\right]$ is of even length as well. Furthermore,

$$
D_{\ell^{\prime}+1, j}(A)=D_{i, j}(A)-D_{i, \ell^{\prime}}(A)=0 .
$$

So, by induction,

$$
\operatorname{Rank}\left(M_{f_{i, \ell^{\prime}}^{A}}\right)=2^{\left|\left[i, \ell^{\prime}\right]\right| / 2} \text { and } \operatorname{Rank}\left(M_{f_{\ell^{\prime}+1, j}^{A}}\right)=2^{\left|\left[\ell^{\prime}+1, j\right]\right| / 2} .
$$

By (4.1), similarly to (4.2), we have

$$
M_{f_{i, \ell^{\prime}}^{A}} f_{\ell^{\prime}+1, j}^{A}=M_{f_{i, \ell^{\prime}}^{A}} \otimes M_{f_{\ell^{\prime}+1, j}^{A}} .
$$

So, since $\left|\left[i, \ell^{\prime}\right]\right|+\left|\left[\ell^{\prime}+1, j\right]\right|=2 m$,

$$
\operatorname{Rank}\left(M_{f_{i, \ell^{\prime}}^{A} f_{\ell^{\prime}+1, j}^{A}}\right)=\operatorname{Rank}\left(M_{f_{i, \ell^{\prime}}^{A}}\right) \cdot \operatorname{Rank}\left(M_{f_{\ell^{\prime}+1, j}^{A}}\right)=2^{m} .
$$

Write $f_{i, j}^{A}$ as

$$
f_{i, j}^{A}=\omega_{i, \ell^{\prime}, j} f_{i, \ell^{\prime}}^{A}, f_{\ell^{\prime}+1, j}^{A}+\underbrace{\left(\left(1+A\left(x_{i}\right) A\left(x_{j}\right)\right) f_{i+1, j-1}^{A}+\sum_{\ell \neq \ell^{\prime}} \omega_{i, \ell, j} f_{i, \ell}^{A} f_{\ell+1, j}^{A}\right)}_{f^{\prime}},
$$

where, by 4.1), the variable $\omega_{i, \ell^{\prime}, j}$ does not occur in f^{\prime}. So,

$$
\operatorname{Rank}\left(M_{f_{i, j}^{A}}\right) \geq \operatorname{Rank}\left(M_{f_{i, \ell^{\prime}}^{A}} f_{\ell^{\prime}+1, j}^{A}\right) .
$$

Therefore, since $\operatorname{Rank}\left(M_{f_{i, j}^{A}}\right) \leq 2^{m}$,

$$
\operatorname{Rank}\left(M_{f_{i, j}^{A}}\right)=2^{m}
$$

4.4 Proof of Separation

In this section we prove the following theorem.
Theorem 4.4. Let $n \in \mathbb{N}$ be an integer. Let $X=\left\{x_{1}, \ldots, x_{2 n}\right\}$ and $\mathcal{W}=\left\{\omega_{i, \ell, j}\right\}_{i, \ell, j \in[2 n]}$ be two sets of variables. Let f be the polynomial over the field \mathbb{F} and the two sets of variables X and \mathcal{W} defined in Section 4.1. Then

1. Let Φ be a multilinear arithmetic formula over the field \mathbb{F} and the two sets of variables X and \mathcal{W} computing f. Then

$$
|\Phi| \geq n^{\Omega(\log (n))}
$$

2. There exists a syntactically multilinear arithmetic circuit over the field \mathbb{F} and the two sets of variables X and \mathcal{W} of depth $O\left(\log ^{2}(n)\right)$ and of size poly (n) computing f.

Proof. We prove the two properties separately.

1. Denote by $\mathbb{G}=\mathbb{F}(\mathcal{W})$ the field of rational functions over the field \mathbb{F} and the set of variables \mathcal{W}. We think of Φ as an arithmetic formula over the field \mathbb{G} and over the set of variables X. By Theorem 4.2, it follows that f is of full rank. So, by Theorem 4.1,

$$
|\Phi| \geq n^{\Omega(\log (n))}
$$

2. The definition of f gives a syntactically multilinear arithmetic circuit of size poly (n) computing f. So, by Theorem 3.1, there exists a syntactically multilinear arithmetic circuit of depth $O\left(\log ^{2}(n)\right)$ and size $\operatorname{poly}(n)$ computing f.

References

[H] L. Hyafil. On the Parallel Evaluation of Multivariate Polynomials. SIAM J. Comput. 8(2): 120-123, 1979.
[N] N. Nisan. Lower Bounds for Non-Commutative Computation. Proceeding of the 23th STOC: 410-418, 1991.
[NW] N. Nisan and A. Wigderson. Lower Bounds on Arithmetic Circuits via Partial Derivatives. Computational Complexity, 6: 217-234, 1996 (preliminary version in Proceeding of the 36th FOCS 1995).
[R04a] R. Raz. Multi-Linear Formulas for Permanent and Determinant are of Super-Polynomial Size. Proceeding of the 36th STOC: 633-641, 2004.
[R04B] R. Raz. Separation of Multilinear Circuit and Formula Size. Theory Of Computing, 2: article 6, 2006. (preliminary version in Proceeding of the 45th FOCS: 344-351, 2004 (title:"Multilinear- $N C_{1}$ \neq Multilinear- $\left.N C_{2}{ }^{\prime \prime}\right)$).
[RSY] R. Raz, A. Shpilka and A. Yehudayoff. A Lower Bound for the Size of Syntactically Multilinear Arithmetic Circuits. ECCC Report TR06-060.
[VSBR] L. G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff. Fast Parallel Computation of Polynomials Using Few Processors. SIAM J. Comput. 12(4): 641-644 (1983)

[^0]: *Faculty of Mathematics and Computer Science, Weizmann Institute, Rehovot, Israel. Email: ran.raz@weizmann.ac.il. Research supported by grants from the Binational Science Foundation (BSF), the Israel Science Foundation (ISF), and the Minerva Foundation.
 ${ }^{\dagger}$ Faculty of Mathematics and Computer Science, Weizmann Institute, Rehovot, Israel. Email: amir.yehudayoff@weizmann.ac.il. Research supported by grants from the Binational Science Foundation (BSF), the Israel Science Foundation (ISF), the Minerva Foundation, and the Israel Ministry of Science (IMOS) - Eshkol Fellowship.

