
On the Perceptron’s Compression

Shay Moran∗ Ido Nachum† Itai Panasoff‡ Amir Yehudayoff§

Abstract

We study and provide exposition to several phenomena that are related to

the perceptron’s compression. One theme is deducing conclusions from this

compression, for example, we describe applications in the robust concepts model

suggested by Arriaga and Vempala, and we prove a “sparse” version of the

separation theorem for convex bodies (which also provides a different proof of

Novikoff’s theorem on the convergence of the perceptron). A second theme is

based on modifications of the perceptron algorithm that extend the aggressive

perceptron and yield better guarantees on its output. These modifications can

be useful in training neural networks as well, and we demonstrate them by

exhibiting simple neural networks with low error on the MNIST database.

∗School of Mathematics, Institute for Advanced Study, Princeton NJ. shaymoran1@gmail.com.
†Department of Mathematics, Technion-IIT, Israel. idon@tx.technion.ac.il.
‡Department of Mathematics, Technion-IIT, Israel. itai.panasoff@gmail.com .
§Department of Mathematics, Technion-IIT, Israel. amir.yehudayoff@gmail.com. Research sup-

ported by ISF Grant No. 1162/15.

1 Introduction

The perceptron is an abstraction of a biological neuron that was introduced in the

1950’s by Rosenblatt [29], and has been extensively studied in many works (see e.g.

the survey [26]). It receives as input a list of real numbers (various electrical signals in

the biological case) and if the weighted sum of its input is greater than some threshold

it outputs 1 and otherwise −1 (it fires or not in the biological case). More formally, a

perceptron computes a function of the form sign(w •x− b) where w ∈ Rd is the weight

vector, b ∈ R is the threshold, • is the standard inner product, and sign : R → {±1}
is 1 on the nonnegative numbers. It is only capable of representing binary functions

that are partitions of Rd defined by some hyperplane.

Definition. A map Y : X → {±1} over a finite set X ⊂ Rd is (linearly)1 separable if

there exists w ∈ Rd such that sign(w • x) = Y (x) for all x ∈ X . When the Euclidean

norm of w is ‖w‖ = 1, the number marg(w, Y) = infx∈X Y (x)w • x is the margin of w

with respect to Y . The number marg(Y) = supw∈Rd:‖w‖=1 marg(w, Y) is the margin of

Y . We call Y an ε-partition if its margin is at least ε.

Variants of the perceptron (neurons) are the basic building blocks of general neural

networks. Typically, the sign function is replaced by some other activation function

(e.g., sigmoid or rectified linear unit ReLu(z) = max{0, z}). Studying the perceptron

and its variants may therefore help in understanding neural networks, their design and

their training process.

Here we provide some new insights into the perceptron’s behavior, survey some of the

related work, and deduce some geometric applications. These ideas may also be useful

in other learning contexts, as we explain below.

The Training Process

Deciding how to train a model from a list of input examples is a central consideration

1We focus on the linear case, when the threshold is 0. A standard lifting that adds a coordinate with

1 to every vector allows to translate the general (affine) case to the linear case. This lifting may

significantly decrease the margin; e.g., the map Y on X = {999, 1001} ⊂ R defined by Y (999) = 1

and Y (1001) = −1 has margin 1 in the affine sense, but the lift to (999, 1) and (1001, 1) in R2 yields

very small margin in the linear sense. This solution may therefore cause an unnecessary increase in

running time. This tax can be avoided, for example, if one has prior knowledge of R = maxx∈X ‖x‖.
In this case, setting the last coordinate to be R does not significantly decrease the margin. In fact,

it can be avoided without any prior knowledge using the idea in Algorithm 3 below.

1

in any learning process. In the case of the perceptron algorithm the input examples

are traversed while maintaining a hypothesis w(t) in a way that reduces the error on

the current example:

initialize: w(0) = ~0 and t = 0

while ∃i with yiw
(t) • xi ≤ 0 do

w(t+1) = w(t) + yixi
t = t+ 1

end

return w(t)

Algorithm 1: The perceptron algorithm

It is well known that the perceptron algorithm terminates whenever its input sample

is linearly separable, in which case its output represents a separating hyperplane.

Novikoff analyzed the number of steps T required for the Perceptron to stop as a

function of the margin of the input sample [28].

A drawback of this algorithm is that there is no guarantee on the margin of its output

(e.g. the margin of the output separator may be much smaller than the optimal mar-

gin). Various works suggested and studied different variants of the basic perceptron

algorithm [7, 9, 21, 16, 2, 35, 22], some of them also guarantee optimal margin (under

various assumptions).

In Section 2 we suggest different variants of the perceptron that are simple to imple-

ment and do not require prior knowledge on the norm of the examples nor on the

optimal margin. These variants can be seen as extensions of the aggressive percep-

tron [10], and are similar to ideas that appear in optimization algorithms in the context

of Support Vector Machines (see e.g. [32] and references within).

In a nutshell, we suggest to replace the condition yiw
(t) • xi < 0 by yiw

(t) • xi < β for

some appropriately chosen β > 0 that may change over time and space. As we will

see, different choices of β yield different guarantees. In the aggressive perceptron, β

is fixed to be 1 and the output’s margin is shown to be at least ε∗

2+R2 , where ε∗ is the

optimal margin, and R is the maximal norm of an input example.

We suggest two different ways to choose β. One that allows to remove the dependence

on R in the output’s margin, and one that allows to arbitrarily approach the optimal

margin. A related work of Soudry et al. [34] analyzes gradient descent for a single

neuron and shows convergence to the optimal separating hyperplane under certain

assumptions (linearly separable, and appropriate activation and loss functions).

2

Our results explain some choices that are made in practice, and can potentially help

to improve them. Observe that if one applies gradient descent on a neuron of the form

ReLu(w •x) with loss function of the form ReLu(β−f(x)w •x) with β = 0 then one gets

the same update rule as in the perceptron algorithm. Choosing β = 1 corresponds to

using the hinge loss to drive the learning process. The fact that β = 1 yields provable

bounds on the output’s margin of a single neuron provides a theoretical explanation

of the success of the hinge loss. Moreover, thinking of β as a hyper-parameter that

can be carefully tuned is a common problem that needs to be addressed in order to

maximize performance. We propose a couple of new options for choosing and updating

β throughout the training process, which can help in solving this hyper-parameter

problem (see Algorithms 4 and 3). We also explain the theoretical advantages of these

options in the case of a single neuron.

We also provide some experimental data. Our experiments verify that our suggestions

for choosing β can indeed yield better results. We used the MNIST database [23]

of handwritten digits as a test case. We used a simple and standard neural network

with one hidden layer consisting of 800 neurons and 10 output neurons (the choice of

800 is the same as in Simard et al. [33]). We trained the network by back-propagation

(gradient descent). The loss function of each output neurons of the form ReLu(w •G(x))

where G(x) is the output of the hidden layer is ReLu(−f(x)w •G(x) + β) for different

β’s. This loss function is 0 if w provides a correct and confident (depending on β)

classification of x and is linear in G(x) otherwise. This choice updates the network

even when the network classifies correctly but with less than β confidence. It has the

added value of yielding simple and efficient calculations compared to other choices

(like cross entropy or soft-max).2

We tested four values of β as shown in Figure 1. In two tests, the value of β is fixed in

time3 to be 0 and 1. In two tests, β changes with the time t in a sub-linear fashion. This

choice can be better understood after reading the analysis of Algorithm 4. Roughly

speaking, the analysis predicts that β should be of the form t1−c for c > 0, and that the

smaller c is, the smaller the error will be and the more time the learning process will

take. This prediction is indeed verified in the experiments; it is evident that choosing

β in a time-dependent manner yields better results. For comparison, the last row of

2An additional added value is that with this loss function there is a dichotomy, either an error occurred

or not. This dichotomy can be helpful in making decisions throughout the learning process. For

example, instead of choosing the batch-size to be of fixed size B, we can choose the batch-size in a

dynamic but simple way: just wait until B errors occurred.
3Time is measured by the number of updates.

3

the table shows the error of the two-layer MLP of the same size that is driven by the

cross-entropy loss [33].

error on MNIST

β = 0 no convergence

β = 1 1.5 %

β ≈ t0.4 1.44 %

β ≈ t0.75 1.35 %

cross-entropy [33] 1.6 %

Table 1: results for 1 hidden layer with 800 neurons

Finally, a natural suggestion that emerges from our work is to add β > 0 as a parameter

for each individual neuron in the network, and not just to the loss function. Namely,

to translate the input to a ReLu neuron by β. The value of β may change during

the learning process. Figuratively, this can be thought of as “internal clocks” of the

neurons.

Generalization Bounds

An important aspect of a learning algorithm is its generalization capabilities; namely,

its error on new examples it was not trained with (see the textbook [31] for background

and definitions). One typically formalizes it by assuming that the input sample consists

of i.i.d. examples drawn from an unknown distribution D on Rd that are labelled by

some unknown function c : Rd → {±1}. The algorithm is said to generalize if it

outputs an hypothesis h : Rd → {±1} so that PrD[h 6= c] is as small as possible.

We focus on the case that c is linearly separable. A natural choice for h in this case is

given by hard-SVM; namely, the halfspace with maximum margin on the input sample.

It is known that if D is supported on points that are γ-far from some hyperplane then

the hard-SVM choice generalizes well (see Theorem 15.4 in [31]). The proof of this

property of hard-SVMs uses Radamacher complexity.

We suggest that using the perceptron algorithm, instead of the hard-SVM solution,

yields a more general statement with a simpler proof. The reason is that the perceptron

naturally performs compression. Similar compression-based generalization bounds for

the Perceptron and other mistake-bound based algorithms were given in [17].

4

Theorem 1.1. Let D be a distribution on Rd. Let c : Rd → {±1}. Let x1, . . . , xm be

i.i.d. samples from D. Let S = ((x1, c(x1)), . . . , (xm, c(xm)). If

Pr
S

[marg(S) < ε] < δ/2 (1)

for some ε, δ > 0, then

Pr
S

[
PD[π(S) 6= c] ≤ 50

log (ε2m) + log(2/δ)

ε2m

]
≥ 1− δ

where π is the perceptron algorithm.

The theorem can also be interpreted of as a local-to-global statement in the follow-

ing sense. Assume that we know nothing of c, but we get a list of m samples that

are linearly separable with significant margin (this is a local condition that we can

empirically verify). Then we can deduce that c is close to being linearly separable.

The perceptron’s compression allows to deduce more general local-to-global state-

ments, like bounding the global margin via the local/empirical margins (this is related

to [30]).

Condition (1) holds when the expected value of one over the margin is bounded from

above (and may hold when c is not linearly separable). This assumption is weaker

than the assumption in [31] on the behavior of hard-SVMs (that the margin is always

bounded from below).

The proof of the theorem is based on viewing the perceptron as a sample compression

scheme, see Section 4 for more details. It highlights the importance of compression in

this context as well.

Dimension Reduction

Here we follow the theme of robust concepts presented by Arriaga and Vempala [3].

Let X ⊂ Rd be of size n so that maxx∈X ‖x‖ = 1. Think of X as representing a

collection of high resolution images. As in many learning scenarios, some assumptions

on the learning problem should be made in order to make it accessible. A typical

assumption is that the unknown function to be learnt belongs to some specific class

of functions. Here we focus on the class of all ε-separated partitions of X ; these are

functions Y : X → {±1} that are linearly separable with margin at least ε. Such

partitions are called robust concepts in [3] and correspond to “easy” classification

problems.

5

Arriaga and Vempala demonstrated the difference between robust concepts and non-

robust concept with the following analogy; it is much easier to distinguish between

“Elephant” and “Dog” than between “African Elephant” and “Indian Elephant.” They

proved that random projections can help to perform efficient dimension reduction for

ε-separated learning problems (and more general examples). They also described “neu-

ronal” devices for performing it, and discussed their advantages. Similar dimension

reductions were used in several other works in learning e.g. [14, 15, 4, 20, 6].

We observe that the perceptron’s compression allows to deduce a simultaneous dimen-

sion reduction. Namely, the dimension reduction works simultaneously for the entire

class of robust concepts. This follows from results in Ben-David et al. [5], who studied

limitations of embedding learning problems in linearly separated classes.

We now explain this in more detail. The first step in the proof is the following theorem

(proved in [5]).

Theorem 1.2. The number of ε-separated partitions of X is at most (2(n+ 1))1/ε
2
.

The theorem is sharp in the following sense.

Example 1.3. Let e1, . . . , en ∈ Rn be the n standard unit vectors. Every subset of the

form (ei)i∈I for I ⊂ [n] of size k is Ω(1/
√
k)-separated, and there are

(
n
k

)
such subsets.

The example also allows to lower bound the number of updates of any perceptron-like

algorithm. If there is an algorithm that given Y : X → {±1} of margin ε is able to

find w so that Y (x) = sign(w • x) for x ∈ X that can be described by at most K of

the points in X then K should be at least Ω(1/ε2).

The upper bound in the theorem allows to perform dimension reduction that simul-

taneously works well on the entire concept class. Let A be a k × d matrix with i.i.d.

entries that are normally distributed (N(0, 1))4 with k ≥ C log(n/δ)/ε4 where C > 0

is an absolute constant. Given A, we can consider

AX = {Ax : x ∈ X} ⊂ Rk

in a potentially smaller dimension space. The map x 7→ Ax is almost surely one-to-

one on X . So, every subset of X corresponds to a subset of AX and vice versa. The

following theorem shows that it preserves all well-separated partitions.

Theorem 1.4. With probability of at least 1− δ over the choice of A, all ε-partitions

of X are ε/2-partitions of AX and all ε/2-partitions of AX are ε/4-partitions of X .

4Other distributions will work just as well.

6

The proof of the above theorem (which is implicit in [5]) is a simple application of

Theorem 1.2 together with the Johnson-Lindenstrauss lemma [18]. For completeness,

it appears in Section 5.

Convex Separation and Games

Linear programming (LP) is a central paradigm in computer science and mathematics.

LP duality is a key ingredient in many algorithms and proofs, and is deeply related to

von Neumann’s minimax theorem that is seminal in game theory [27]. Two related and

fundamental geometric properties are Farkas’ lemma [12], and the following separation

theorem.

Theorem 1.5. For every non empty convex sets K,L ⊂ Rd, precisely one of the

following holds: (i) dist(K,L) = inf{‖p − q‖ : p ∈ K, q ∈ L} = 0, or (ii) there is a

hyperplane separating K and L.

We observe that the following stronger version of the separation theorem follows from

the perceptron’s compression (a similar version of Farkas’ lemma can be deduced as

well).

Lemma 1.6 (Sparse Separation). For every non empty convex sets K,L ⊂ Rd so that

sup{‖p− q‖ : p ∈ K, q ∈ L} = 1 and every ε > 0, one of the following holds:

(i) dist(K,L) < ε.

(ii) There is a hyperplane H = {x : w •x = b} separating K from L so that its normal

vector is “sparse”:

– w•p−b
‖w‖ > ε

30
for all p ∈ K,

– w•q−b
‖w‖ < − ε

30
for all q ∈ L, and

– w is a sum of at most (10/ε)2 points in K and −L.

The lemma is strictly stronger than the preceding separation theorem. It is proved in

Section 3 below, where we also explain how this perspective yields an alternative proof

of Novikoff’s theorem on the convergence of the perceptron [28]. It is interesting to

note that the usual proof of the separation theorem relies on a concrete construction of

the separating hyperplane that is geometrically similar to hard-SVMs. The proof using

the perceptron, however, does not include any “geometric construction” and yields a

sparse and strong separator (it also holds in infinite dimensional Hilbert space, but it

uses that the sets are bounded in norm).

7

These ideas have a game theoretic interpretation as well. In the associated game there

are two players. A Point player whose pure strategies are points v in some finite set

V ⊂ Rd so that max{‖v‖ : v ∈ V } = 1, and a Hyperplane player whose pure strategies

are w for w ∈ Rd with ‖w‖ = 1. For a given choice of v and w, the Hyperplane player’s

payoff is of P (v, w) = v •w coins (if this number is negative, then the Hyperplane player

pays the Point player). The goal of the Point player is thus to minimize the amount of

coins she pays. A mixed strategy of the Point player is a distribution µ on V , and of

the Hyperplane player is a (finitely supported) distribution κ on {w : ‖w‖ = 1}. The

expected gain is

P (µ, κ) = E
(v,w)∼µ×κ

P (v, w).

Claim 1.7 (Sparse Strategies). Let ε∗ be the minimax value of the game:

ε∗ = sup
κ

inf
µ
P (µ, κ) ≥ 0.

There is T ≥ 1
3(ε∗)2

(if ε∗ = 0 then T = ∞) and a sequence of mixed strategies

µ1, µ2, . . . , µT of the Point player so that for all t ≤ T , the support size of µt is at

most t and for every mixed strategy κ of the Hyperplane player,

P (µt, κ) ≤
√

3/t.

The last strategy in the sequence µ1, µ2, . . . guarantees the Point player a loss of at most

3ε∗. This sequence is naturally and efficiently generated by the perceptron algorithm

and produces a strategy for the Point player that is optimal up to a constant factor

(see Section 3). The ideas presented in Section 2 allow to reduce the constant 3 to as

close to 1 as we want, by paying in running time (see Algorithm 4).

2 Training

In this section we explore a couple of methods for training perceptrons. Part of the

motivation is suggesting ideas for training other models, like neural networks.

The standard analysis of the perceptron convergence properties uses the optimal sep-

arating hyperplane (later in Section 3 we present an alternative analysis that does not

use it): let

w∗ = argmax
w∈Rd:‖w‖=1

marg(w, S),

8

where we think of S as the map from {x1, . . . , xm} to {±1} defined by xi 7→ yi.
5

Novikov’s analysis consists of the following two parts. Let ε∗ = marg(w∗, S) and R =

maxi ‖xi‖.

Part I: The projection grows linearly in time. In each iteration, the projection of w(t)

on w∗ grows by at least ε∗, since yixi • w
∗ ≥ ε∗. By induction, we get w(t) • w∗ ≥ ε∗t

for all t ≥ 0.

Part II: The norm grows sub-linearly in time. In each iteration,

‖w(t)‖2 = ‖w(t−1)‖2 + 2yixi • w
(t−1) + ‖xi‖2 ≤ ‖w(t−1)‖2 +R2

(the term 2yixi • w
(t−1) is negative by choice). So by induction ‖w(t)‖ ≤ R

√
t for all

t.

Combining the two parts,

1 ≥ w(t) • w∗

‖w(t)‖‖w∗‖
≥ ε∗

R

√
t,

which implies that the number of iterations of the algorithm is at most (R/ε∗)2.

This analysis provides no guarantees on the margin of the hyperplane the perceptron

outputs (and it is not hard to construct examples where this margin is arbitrarily

small). We suggest two different modifications of the algorithm that are not too costly

in terms of the running time and guarantee near optimal margin. We start with

an algorithm that achieves a constant approximation of the optimal margin ε∗; this

version is called the aggressive perceptron [10].

initialize: w(0) = ~0 and t = 0

while ∃i with yiw
(t) • xi < β do

w(t+1) = w(t) + yixi
t = t+ 1

end

return w(t)

Algorithm 2: The aggressive perceptron algorithm

We only replaced that < 0 condition in the while loop by a < β condition, for some

β > 0. As before, by induction

‖w(t)‖2 = ‖w(t−1)‖2 + 2yixi • w
(t−1) + ‖xi‖2 ≤ (2β +R2)t

5We assume that S is consistent with a function (does not contain identical points with opposite

labels).

9

and

1 ≥ w(t) • w∗

‖w(t)‖‖w∗‖
≥ ε∗√

2β +R2

√
t

where R = maxi ‖xi‖. The number of iterations is thus at most 2β+R2

(ε∗)2
. In addition,

by choice, for all i,

yiw
(t) • xi ≥ β.

So, since

‖w(t)‖ ≤
√

(2β +R2)t ≤ 2β +R2

ε∗
,

we get

marg(w(t), S) ≥ ε∗β

2β +R2
.

Specifically, by knowing the maximal norm of the examples we can achieve the true

margin up to a multiplicative constant. For example, we can take β = R2, and get

margin at least ε∗/3 with running time at most 3R2/(ε∗)2.

It is possible to do even better than that. We do not need to know in advance the

maximal norm of the examples. We can adaptively change the parameter β according

to example received.

initialize: w(0) = ~0 and t = 0 and β = 0

while ∃i with yiw
(t) • xi ≤ β do

w(t+1) = w(t) + yixi
t = t+ 1

if β < ‖xi‖2 then
β = 4‖xi‖2

end

end

return w(t)

Algorithm 3: The R-independent perceptron algorithm

This version of the algorithm guarantees a margin of ε∗/3 coupled with a running

time comparable to the original algorithm without knowing R. Indeed, to bound the

running time observe that between every a change in β occurs, as before, there could

be at most 2β+R2

ε2
errors (for the relevant β and R). The amount of changes in β is at

10

most dlog(R/r)e, where r = mini ‖xi‖. The overall running time is at most

dlog(R/r)e∑
k=1

2 • 4 |xik |
2 + (2 |xik |)2

(ε∗)2
≤ 2 •

dlog(R/r)e∑
k=1

3 • 4kr2

ε2

≤ 6 • 4/3 • 4dlog(R/r)e
r2

ε2
= O((R/ε∗)2).

The third and last version we propose, reaches a margin that is as close to the optimum

as we wish. The algorithm depends on a parameter 1 < α < 2 that determines the

guarantee on the margin of its output. The closer α is to 2, the larger the margin

and the running time are. For simplicity, we assume here that R = maxi ‖xi‖ = 1.

The idea is as follows. The analysis of the classical perceptron relies on the fact that

‖w(t)‖2 ≤ t in each step. On the other hand, in an “extremely aggressive” version of

the perceptron that always updates, one can only obtain a trivial bound ‖w(t)‖2 ≤ t2

(as w(t) can be the sum of t unit vectors in the same direction). The update rule

in the version below is tailored so that a bound of ‖w(t)‖2 ≤ tα for α ∈ (1, 2) is

maintained.

initialize: w(0) = ~0 and t = 0 and β = 0

while ∃i with yiw
(t) • xi ≤ β do

w(t+1) = w(t) + yixi
t = t+ 1

β = 0.5((t+ 1)α − tα − 1)

end

return w(t)

Algorithm 4: The ∞-perceptron algorithm

Here we use that for t ≥ 2,

‖w(t)‖2 ≤ ‖w(t−1)‖2 + (tα − (t− 1)α − 1) + ‖xi‖2.

By induction, for all t ≥ 0,

‖w(t)‖2 ≤ tα.

This time

1 ≥ w(t) • w∗

‖w(t)‖‖w∗‖
≥ ε∗t

tα/2
.

So, the running time is at most (1/ε∗)2/(2−α).

The output’s margin is at least

0.5((t+ 1)α − tα − 1)

tα/2
. (2)

11

This is decreasing function for t > 0, since its derivative is at most zero (see Ap-

pendix A). So, by plugging in the upper bound on t, since (t + 1)α − tα ≥ αtα−1 for

t ≥ 0, the output’s margin is at least

0.5α
(1/ε∗)2(α−1)/(2−α) − 1

(1/ε∗)α/(2−α)
= 0.5αε∗ − (ε∗)α/(2−α).

So we can get arbitrarily close to the true margin by setting α = 2(1 − δ) for some

small 0 < δ < 0.5 of our choice. This gives margin

(1− δ)ε∗ − (ε∗)(2−δ)/δ ≥ ε∗
(
1− δ − (ε∗)1/δ

)
.

The running time, however, becomes (1/ε∗)1/δ.

When ε∗ is very close to 1, the lower bound on the margin above may not be mean-

ingful. We claim that the margin of the output is still close to ε∗ even in this case. To

see this, let w̃ be a hyperplane with margin ε̃ = (1 − δ ln(1/δ))ε∗. We can carry the

argument above with w̃ instead of w∗, and get that the margin is at least

ε̃
(
1− δ − (ε̃)1/δ

)
> (1− 2δ − δ ln(1/δ))ε∗.

So we can choose δ small enough, without knowing any information on ε∗, and get an

almost optimal margin.

This bound on the running time is sharp, as the following example shows.

Example 2.1. Let X = {
(
(
√

1− ε2, ε), 1
)
,
(
(−
√

1− ε2, ε), 1
)
}. This two points are

linearly separated with margin Ω(ε). The algorithm stops after Ω
(

(1/ε)2/(2−α)
)

itera-

tions (if ε is small enough and α close enough to 2).

3 Convex Separation and Games

Convex Separation

We start by proving the sparse separation lemma (Lemma 1.6). Let K,L be convex

sets and ε > 0. For x ∈ Rd, let x̃ in Rd+1 be the same as x in the first d coordinates

and 1 in the last (we have ‖x̃‖ ≤ ‖x‖ + 1). We thus get two convex bodies K̃ and L̃

in d+ 1 dimensions (using the map x 7→ x̃).

Run Algorithm 2 with β = 1 on inputs that positively label K̃ and negatively label L̃.

This produces a sequence of vectors w(0), w(1), . . . so that ‖w(t)‖ ≤
√

6t for all t. For

12

every t > 0, the vector w(t) is of the form w(t) = k(t) − `(t) where k(t) is a sum of t1
elements of K̃ and `(t) is a sum of t2 elements of L̃ so that t1 + t2 = t. In particular,

we can write 1
t
w(t) = α(t)p(t)− (1−α(t))q(t) for α(t) ∈ [0, 1] where p(t) ∈ K̃ and q(t) ∈ L̃

(note that the last coordinate of w(t) equals 2α(t) − 1
2
).

If the algorithm does not terminate after T steps for T satisfying
√

6/T < ε/4 then it

follows that ‖ 1
T
w(T)‖ < ε/4. In particular, |α(T) − 1/2| < ε/8 and so

ε

4
> ‖α(t)p(t) − (1− α(t))q(t)‖ > ‖p

(t) − q(t)‖
2

− ε

4
,

which implies that dist(K,L) < ε.

In the complementing case, the algorithm stops after T < (10/ε)2 rounds. Let w be

the first d coordinates of w(T) and b be its last coordinate. For all p ∈ K,

w • p+ b

‖w‖
≥ 1

‖w(T)‖
≥ 1√

6T
>

ε

30
.

Similarly, for all q ∈ L we get w•q+b
‖w‖ < − ε

30
.

Alternative Proof of the Perceptron’s Convergence

A similar argument provides a different proof of Novikoff’s theorem on the conver-

gence of the perceptron [28]. Assume without loss of generality that all of exam-

ples are labelled positively (by replacing x by −x if necessary). Also assume that

R = maxi ‖xi‖ = 1. As in the proof above, let w(0), w(1), . . . be the sequence of vectors

generated by the perceptron (Algorithm 1). Instead of arguing that the projection

on w∗ grows linearly with t, argue as follows. The vectors v(1), v(2), . . . defined by

v(t) = 1
t
w(t) are in the convex hull of the examples and have norm at most ‖v(t)‖ ≤ 1√

t
.

Specifically, for every w of norm 1 we have v(t) • w ≤ 1√
t

and so there is an example x

so that x • w ≤ 1√
t
. This implies that the running time T satisfies 1√

T
≥ ε∗ since for

every example x we have x • w∗ ≥ ε∗.

Game Theory

We now move to the game theoretic perspective (we prove Claim 1.7). Let v(t) =
1
t
w(t)/t be as in the proof of Lemma 1.6 above, when we replace K by V and L by ∅. We

13

can interpret v(t) as a mixed-strategy µt of the Point player (the uniform distribution

over some multi-subset of V of size t). Specifically, for every κ and t > 0,

P (µt, κ) = E
w∼κ

v(t) • w ≤ ‖v(t)‖ ≤
√

3/t.

Denote by T the stopping time. If T = ∞ then indeed P (µt, κ) tends to zero as

t→∞. If T <∞, we have v • v(T) ≥ 1
T

for all v ∈ V . We can interpret v(T) as a non

trivial strategy for the Hyperplane player: let

w̃ =
v(T)

‖v(T)‖
.

Thus, for every µ,

P (µ, w̃) ≥ 1

T‖v(T)‖
≥ 1√

3T
.

In particular, ε∗ ≥ 1√
3T

and so

T ≥ 1

3(ε∗)2
.

4 Generalization Bounds

Here we analyze the generalization capabilities of the perceptron. In a nutshell, these

capabilities stem from the compression it performs. To formally explain this, we need

the notions of sample compression schemes [24] and selection schemes [11], which

correspond to learning algorithms whose output hypothesis is determined by a small

subsample of the input.

Definition (Selection schemes). A selection scheme of size d consists of a compression

map κ and a reconstruction map ρ such that for every input sample S:

• κ maps S to a sub-sample of S of size at most d.

• ρ maps κ(S) to a hypothesis ρ(κ(S)) : X → {±1}; this is the output of the

learning algorithm induced by the selection scheme.

Following Littlestone and Warmuth, David et al. showed that every selection scheme

does not overfit its data [11]: Let (κ, ρ) be a selection scheme of size d. Let S be a

sample of m independent examples from an arbitrary distribution D that are labelled

by some fixed concept c, and let K(S) = ρ (κ (S)) be the output of the selection

scheme. For a hypothesis h, let LD(h) = PrD[h 6= c] denote the (true) error of h and

LS(h) = 1
m

∑m
i=1 1h(xi)=c(xi) denote the empirical error of h.

14

Theorem 4.1. For every δ > 0,

Pr
S

[
|LD (K (S))− LS (K (S))| ≥

√
ε · LS (K (S)) + ε

]
≤ δ,

where

ε = 50
d log (m/d) + log(1/δ)

m
.

Proof of Theorem 1.1. Consider the following selection scheme of size 1/ε2 that agrees

with the perceptron on samples with margin at least ε: If the input sample S has

marg(S) ≥ ε, apply the Perceptron (which gives a compression of size 1/ε2). Else,

compress it to the emptyset and reconstruct it to some dummy hypothesis. The

theorem now follows by applying Theorem 4.1 on this selection scheme and by the

assumption that that marg(S) ≥ ε for 1− δ/2 of the space (note that LS(K(S)) = 0

when marg(S) ≥ ε).

5 Dimension Reduction

Following [5], this section uses the perceptron to count the collection of linearly separa-

ble partitions over a given set of points. This allows to perform simultaneous efficient

dimension reduction for the entire family of well-separated halfspaces. We suggest

that it may sometimes be useful to include such dimension reductions in other learn-

ing algorithms. One example we are aware of that is similar in spirit is given in [1],

where the random initialization of a neural network is typically useful.

The perceptron algorithm allows us to bound the amount of possible ε-partitions on

a given set.

Proof of Theorem 1.2. Given an ε-partition of the set X , the perceptron algorithm

finds a separating hyperplane after making at most 1/ε2 updates. It follows that every

ε-partition can be represented by a multiset of X together with the corresponding

signs. The total number of options is at most (n+ 1)1/ε
2
• 21/ε2 .

We now review a well known lemma by Johnson and Lindenstrauss [18]; see also [25]

and references within. The lemma states that a random projection approximately

preserves norms and inner products (it is proved by a couple of applications of the

union bound together with analyzing the case of a single vector).

15

Lemma 5.1. Let x1, ..., xN ∈ Rd with ‖xi‖ ≤ 1 for all i ∈ [N]. Then, for every ε > 0

and 0 < δ < 1/2,

P
[
∃i, j ∈ [N] |(Axi • Axj)− (xi • xj)| > ε

]
< δ,

where k = O(log(N/δ)/ε2) and A is a k× d matrix with i.i.d. entries that are N(0, 1).

We can now prove the dimension reduction.

Proof of Theorem 1.4. Every linear ε-partition can be represented by a unit vector (the

normal to the hyperplane). Pick such a vector for every ε-partition. By Theorem 1.2

the total number of vectors picked is at most (2(n+ 1))1/ε
2
. Now, the previous lemma

implies the desired result, as it suffices to preserve the n(2(n + 1)1/ε
2
) inner products

between the picked vectors and the n points in X up to accuracy ε/2.

References

[1] A. Andoni, R. Panigrahy, G. Valiant and L. Zhang. Learning Polynomials with

Neural Networks. PMLR 32(2), pages 1908–1916, 2014.

[2] J. K. Anlauf and M. Biehl. The AdaTron: An Adaptive Perceptron Algorithm.

EPL, 1989.

[3] R.I. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts

and random projection. Machine Learning, 63(2), pages 161–182, 2006.

[4] N. Balcan, A. Blum and S.Vempala. On Kernels, Margins and Low-dimensional

mappings. In ALT 2004.

[5] S. Ben-David, N. Eiron and H. U. Simon. Limitations of Learning Via Embeddings

in Euclidean Half Spaces. In JMLR 2002.

[6] A. Blum and R. Kannan. Learning an intersection of k halfspaces over a uniform

distribution. In FOCS, 1993.

[7] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. In COLT , pages 144-152, 1992.

[8] Nicol‘o Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization

ability of on-line learning algorithms. IEEE Transactions on Information Theory,

50(9), pages 2050–2057, 2004.

16

[9] R. Collobert and S. Bengio. Links between perceptrons, MLPs and SVMs. IDIAP,

2004.

[10] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online

passive-aggressive algorithms. Journal of Machine Learning Research 7, pages

551–585, 2006.

[11] O. David, S. Moran and A. Yehudayoff. Supervised learning through the lens of

compression. In NIPS, pages 2784-2792, 2016.

[12] G. Farkas. Uber die Theorie der Einfachen Ungleichungen. Journal fur die Reine

und Angewandte Mathematik, 124 (124), pages 1–27, 1902.

[13] Y. Freund and R. E. Schapire. Large Margin Classification Using the Perceptron

Algorithm. Machine Learning, pages 277-296, 1999.

[14] A. Garg, S. Har-Peled and D. Roth. On generalization bounds, projection profile,

and margin distribution. In ICML, pages 171–178, 2002.

[15] A. Garg and D. Roth. Margin Distribution and Learning. In ICML, pages 210–

217, 2003.

[16] C. Gentile. A New Approximate Maximal Margin Classification Algorithm. Jour-

nal of Machine Learning Research, pages 213-242, 2001.

[17] T. Graepel, R. Herbrich and J. Shawe-Taylor. PAC-Bayesian Compression Bounds

on the Prediction Error of Learning Algorithms for Classification. Machine Learn-

ing, pages 55-76, 2005.

[18] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a

Hilbert space. Conference in modern analysis and probability, 1982.

[19] R. Khardon and G. Wachman. Noise Tolerant Variants of the Perceptron Algo-

rithm. Journal of Machine Learning Research, pages 227-248 , 2007.

[20] A. Klivans and R. Servedio. Learning intersections of halfspaces with a margin.

In Workshop on Computational Learning Theory, 2004.

[21] M. Korzen and K. Klesk. Maximal Margin Estimation with Perceptron-Like

Algorithm. In ICAISC, 2008.

[22] W. Krauth and M. Mézard. Learning algorithms with optimal stablilty in neural

networks. J. Phys. A: Math. Gen., 1987.

17

[23] Y. LeCun and C. Cortes. The MNIST database of handwritten digits. 1998.

[24] N. Littlestone and M. Warmuth. Relating data compression and learnability.

Unpublished, 1986.

[25] J. Matousek. On variants of the Johnson–Lindenstrauss lemma. Random Struc-

tures & Algorithms, 33(2), pages 142–156, 2008.

[26] M. Mohri and A. Rostamizadeh. Perceptron Mistake Bounds. arXiv:1305.0208.

[27] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, pages

295–320, 1928.

[28] Albert B.J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the

Symposium on the Mathematical Theory of Automata, volume 12, pages 615–622,

1962.

[29] F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6), pages 386–408, 1958.

[30] R.E. Schapire, Y. Freund, P. Bartlett and W. S. Lee. Boosting the margin: A

new explanation for the effectiveness of voting methods. The annals of statistics,

26(5), pages 1651–1686, 1998.

[31] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge University Press, 2014.

[32] S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter. Pegasos: Primal estimated

sub-gradient solver for SVM. Mathematical programming 127, no. 1, pages 3-30,

2011.

[33] P. Y. Simard, D. Steinkraus and J. C. Platt. Best practices for convolutional

neural networks applied to visual document analysis. In ICDAR 3, pages 958–962,

2003.

[34] D. Soudry, E. Hoffer and N. Srebro. The Implicit Bias of Gradient Descent on

Separable Data. arXiv:1710.10345, 2017.

[35] A. Wendemuth. Learning the unlearnable. J. Phys. A: Math. Gen., 1995.

18

A The derivative of the margin

Here we prove that the derivative of (2) is at most zero. The numerator of the deriva-

tive is 0.5 times

(α(t+ 1)α−1 − αtα−1)tα/2 − α

2
t(α−2)/2((t+ 1)α − tα − 1))

=
α

2
t(α−2)/2(2t(t+ 1)α−1 − 2tα) +

α

2
t(α−2)/2(−(t+ 1)α + tα + 1))

=
αt(α−2)/2

2

(
(t+ 1)α−1(t− 1)− tα + 1

)
.

At t = 1, we get the value 0, so it suffices to prove that (t + 1)α−1(t − 1) − tα + 1

is a non increasing function for t ≥ 1. Indeed, the derivative of the term inside the

parenthesis is

(α− 1)(t+ 1)α−2(t− 1) + (t+ 1)α−1 − αtα−1

= (α− 1)

(
t− 1

(t+ 1)2−α
− tα−1

)
+ (t+ 1)α−1 − tα−1

≤ (α− 1)

(
t− 1

(t+ 1)2−α
− tα−1

)
+ (α− 1)tα−2 (α < 2)

≤ (α− 1)

(
t− 1

t2−α
− tα−1 +

1

t2−α

)
= 0.

19

	Introduction
	Training
	Convex Separation and Games
	Generalization Bounds
	Dimension Reduction
	References
	The derivative of the margin

