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Chapter 1

Preliminaries

Formalities

There are 4 hours with me, and 2 hours with TA per week. See Moodle for details about

exercises, final grade structure, etc.

Goals

In first course, you studied differential calculus, which deals with “local” properties of

functions. In this course, more “global” properties, like averages, areas, volumes etc.

These notions are part of the basics for modern mathematics, and they also lie at

the basis of the scientific revolution, and understanding them is crucial to understating

the world from a modern scientific perspective.

We also aim to develop abstract thinking, and to explain the importance of defini-

tions.
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Chapter 2

Indefinite integrals

You already studied the notion of derivative. We start this course by abstractly studying

the “inverse” operation of derivatives.

Definition 1. An indefinite integral of f is a function F so that F ′ = f .

It is sometimes called “anti-derivative.”

Example

f(x) = 2x then x2 and x2 + 1 are both indefinite integrals of f .

Existence

We shall discuss existence in detail later on.

Uniqueness

In general, F (x) = x2 + c for all c. So, F is not unique, it is a family of functions.

Notation

The indefinite integral is denoted
∫
f(x)dx. This notation will be explained later on.

Note that we do not pay attention to the domain of the functions for now; we think

of the indefinite integral as a syntactic operation. Later on we shall give it seman-

tics/meaning.

More examples

•
∫
exdx = ex + c.

•
∫
xndx = 1

n+1
xn+1 + c if n 6= −1.
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•
∫

1/xdx = ln |x|+ c. Check: d
dx

ln(x) = 1/x for x > 0 and d
dx

ln(−x) = (1/(−x)) ·
(−1) = 1/x for x < 0.

•
∫

1
1+x2

dx = tan−1(x) + c.

• More generally,
∫
f ′(x)dx = f(x) + c.

Computability

Derivative can be computed in a systematic way. In general, however, there is no

systematic way to compute an integral of an elementary function. The integral
∫
ex

2
dx

for example is not elementary; this was proved by Liouville. The standard/modern way

for proving this is using differential field theory.

Properties

Properties of derivatives imply properties of integration.

Linearity

Theorem 2. If f, g have integrals then for all a, b ∈ R∫
af(x) + bg(x)dx = a

∫
f(x)dx+ b

∫
g(x)dx.

Note that formally this equality is an equality of two sets of functions.

Proof. The derivatives of the r.h.s. is af(x) + bg(x), by linearity of derivative.

This is very useful: For example,
∫
x+ exdx = x2/2 + ex + c.

Integration by parts

Theorem 3. If f, g are integrable and F (x) =
∫
f(x)dx then∫

f(x)g(x)dx = F (x) · g(x)−
∫
F (x)g′(x)dx.

Proof. We shall prove

F (x) · g(x) =

∫
f(x)g(x)F (x)g′(x)dx,
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which is equivalent the theorem by the linearity of integrals. The derivative of the r.h.s.

is

(F (x) · g(x))′ = F ′(x)g(x) + F (x)g′(x) = f(x)g(x) + F (x)g′(x).

This is also very useful: If we want to integrate f(x) · g(x) and we know the integral

of f is
∫
f(x)dx := F (x), because then∫

f(x)g(x)dx = F (x)g(x)−
∫
F (x)g′(x)dx,

and potentially the integral we are left with is simpler. Examples:

• ∫
x ln(x)dx = (x2/2) ln(x)−

∫
(x2/2)(1/x)dx = x2 ln(x)/2− x2/4 + c.

• ∫
1 · ln(x)dx = x ln(x)−

∫
x(1/x)dx = x ln(x)− x+ c.

Substitution

Theorem 4. Assume f, g are integrable, g is differentiable and F =
∫
f(x)dx then∫

f(g(x))g′(x)dx = F (g(x)) + c.

Proof. Derivative of composition implies:

(F (g(x)))′ = F ′(g(x)) · g′(x) = f(g(x)) · g′(x).

Two simple examples:

1.
∫
ex

2
2xdx = ex

2
+ c.

2.
∫ f ′(x)

f(x)
dx = ln |f(x)|+ c.
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Trigonometric substitutions

Sometimes when there are square roots it is helpful to use trigonometric functions. For

example. ∫ √
1− x2dx =

x=sin y,dx/dy=cos y

∫
cos2(y)dy (*)

=
cos(2y)=2 cos2(y)−1

1

2

∫
cos(2y) + 1dy

=
1

4
sin(2y) +

y

2
+ c

=
1

4
sin(2 sin−1(x)) +

sin−1(x)

2
+ c

=
sin(2t)=2 sin(t) cos(t)

1

2
x
√

1− x2 +
sin−1(x)

2
+ c.

Note that to justify (∗) we need to take derivative of the r.h.s. w.r.t. x and verify it is

correct. Let us do this abstractly, for
∫
g(x)dx with the substitution x = g(y) with g

invertible (so we write “dx = g′(y)dy”):

d

dx

∫
f(g(y))g′(y)dy

∣∣∣∣
y=g−1(x)

= f(g(y))g′(y)
∣∣∣
y=g−1(x)

· (g−1(x))′

= f(x)g′(g−1(x))
1

g′(g−1(x))′

= f(x).

There are more examples:

• For
√
a2 − x2 try x = a sin y.

• For
√
a2 + x2 try x = a tan y and use 1 + 1/ tan2(y) = 1/ cos2(y).

• For
√
x2 − a2 try x = a

sin y
.

In many cases all three methods are used.

Rational functions

What if we want to compute the integral∫
u(x)

v(x)
dx
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of a rational function (both u, v are polynomials)? First, by dividing polynomials we

may reduce this system to a system of the form∫
r(x) +

p(x)

q(x)
dx

where the degree of p is small than that of q. We shall not explain this part here (you

should know it by now). The integral of r(x) is simple, so we focus on the integral of

the other part.

We will just give one example; you may generalize it by yourself. What is∫
−2x+ 4

(x2 + 1)(x− 1)2
dx =?

The idea is to decompose the rational function to parts. What are A,B,C,D so that

−2x+ 4

(x2 + 1)(x− 1)2
=
Ax+B

x2 + 1
+

C

x− 1
+

D

(x− 1)2
?

This is the first step in general. The rule is that the powers in numerator are smaller

than power in denominator. To find A,B,C,D calculate

Ax+B

x2 + 1
+

C

x− 1
+

D

(x− 1)2

=
(Ax+B)(x2 − 2x+ 1) + C(x2 + 1)(x− 1) +D(x2 + 1)

(x2 + 1)(x− 1)2

=
x3(A+ C) + x2(−2A+B − C +D) + x(A− 2B + C) +B − C +D

(x2 + 1)(x− 1)2
.

So, we have four linear equations in four variables: A+ C = 0 or

A = −C.

And −2 = A+ C − 2B so

B = 1.

And

0 = −2A+B − C +D = −A+ 1 +D

and

4 = B − C +D = 1 + A+D.
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Sum the two: 4 = 2 + 2D and

D = 1, A = 2, C = −2.

Finally, ∫
−2x+ 4

(x2 + 1)(x− 1)2
dx

=

∫
2x

x2 + 1
+

1

x2 + 1
− 2

x− 1
+

1

(x− 1)2
dx

= ln |x2 + 1|+ tan−1(x)− 2 ln |x− 1| − 1

x− 1
+ c.

Summary

We defined indefinite integral (a.k.a. anti-derivative). We saw several of its properties,

and how to compute it in some cases. You will see more examples in the exercises and

with the TA.



Chapter 3

Definite integrals

We have discussed integrals on a syntactic level. We shall now discuss their seman-

tics/meaning. Here we address the following natural question:

how to compute the area of a shape?

Motivation to study this question comes from geometry, engineering, physics, and more.

We focus on the area “between the x-axis and a graph of a function f” in the interval

[a, b]. Area above the x-axis is positive and below is negative. Draw an examples. This

area is denoted by ∫ b

a

f(x)dx.

This is just a number (the area).

The general idea is very simple, but extremely powerful. It is one of the cornerstones

of mathematics. The program has two parts:

1. Answer the question for “simple” objects: learn how to measure the area of simple

forms, like rectangles and triangles.

2. Approximate every object by simple ones, and take a limit: approximate every

shape by small enough simple shapes.

Step function

The simplest functions to consider are step functions. Let f(x) = c for x ∈ [a, b] and

f(x) = 0 otherwise. The area
∫ b
a
f(x)dx is the area of a rectangle, so it is c(b− a).

Steps function

Now consider a collection of step functions. Let a0 < a1 < a2 < . . . < an. Let f be a

function that equals ci in (ai−1, ai) for i ∈ {1, 2, . . . , n}. Draw it. The area
∫ an
a0
f(x)dx

13
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is the area of several rectangles and equals
∑n

i=1 ci(ai − ai−1).

A simple example

Consider f(x) = x in [0, 1]. What is the area? It is a triangle of area 1/2, so
∫ 1

0
xdx =

1/2.

Let us use the method we discussed above. Let xi = i/n for i = 0, 1, . . . , n for large

n. The area is approximately

n∑
i=1

i

n

1

n
=

1

n2

n(n+ 1)

2
→ 1/2,

when n→∞. The larger n is, the better the approximation of area is.

Integrability

To study the general case, we need some definitions.

Definition 5. A partition P of [a, b] is a finite set of points {x0, . . . , xn} so that

a = x0 < x1 < . . . < xn = b.

We want our partitions to be “dense.” We measure this as follows:

Definition 6. The diameter of a partition P is

D(P ) = max{xi − xi−1 : i ∈ {1, 2, . . . , n}}.

(The smaller the diameter is, the denser the partition is.)

Between xi−1 and xi the function f may not be constant. We need to choose a point

in [xi−1, xi] to evaluate f in. Denote such a point by ti ∈ [xi−1, xi]. Call t = (t1, . . . , tn)

evaluation points in P .

Definition 7. Given f, P, t as above, the Riemann sum is

S(f, P, t) =
n∑
i=1

f(ti)(xi − xi−1).

Given a partition P of [a, b] and a choice of evaluation points t, the area under f

should be close to the Riemann sum S(f, P, t). Draw it. Of special interest to us are

functions for which this method works; this roughly means that as long as the parameter

of the partition is small, we get a good approximation of area.
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Definition 8. The function f is (Riemann) integrable in [a, b] if there is I ∈ R so that

for every ε > 0 there is δ > 0 so that for every partition P of [a, b] with D(P ) ≤ δ and

for every choice of evaluation points t in P ,

|I − S(f, P, t)| < ε.

We denote ∫ b

a

f(x)dx = I

and call it the integral of f between a, b.

Notation

The notation
∫

in this context is clearer than the “anti-derivative” from before. Later

we shall explain connection. It is obtained from S which corresponds to “sum” by

elongating it, and the “dx” indicates what we are summing over (“∆xi = xi − xi−1”).

Examples

I. It can be shown e.g. that a constant function is integrable. Assume f = c on [a, b].

What is I? I = c(a− b). Let ε > 0 and let δ = 1. Let P be of diameter at most δ and t

a choice of evaluation points. Then,∣∣∣∣∣I −∑
i

f(ti)(xi − xi−1)

∣∣∣∣∣ =

∣∣∣∣∣I − c∑
i

(xi − xi−1)

∣∣∣∣∣ = |I − c(b− a)| = 0.

II.

Exercise 9. The function f(x) = x is integrable in [0, 1].

Later on, we will prove a much more general theorem (we will find some families of

integrable functions).

III. Are all functions integrable? No. The Dirichlet function on [0, 1]:

f(x) =

{
1 x ∈ Q
0 x 6∈ Q

.

If ti are chosen to be rational then the Riemann sum is 1, and if ti are irrational then it

is 0 (since the rationals/irrationals are dense in R, we can always choose such points).
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Boundedness

Claim 10. If f is integrable on [a, b] then it is bounded.

Proof. Assume f is not bounded. Assume towards a contradiction that there is some

δ > 0 so that for all P with D(P ) ≤ δ and for all t,

|I − S(f, P, t)| ≤ 1.

Let P = {x0, . . . , xn} be a partition with D(P ) ≤ δ. There is i ∈ [n] so that f is not

bounded in [xi−1, xi]. That is, for all M there is xM ∈ [xi−1, xi] so that |f(x)| > M .

Thus, for all M , by choosing t outside [xi−1, xi] arbitrarily,

|I|+ 1 ≥ f(xM)(xi − xi−1) +
∑
j 6=i

f(tj)(xj − xj−1),

but this is impossible.

Comment. We will later see that we can define area of unbounded domains, but the

claim means that we need to use a more general definition.

Darboux sums

We have defined the notion of integrability. It essentially says that we do not need to

make very clever choices in order to approximate the area. But are there interesting

integrable functions? Can we find “simpler” ways to characterize them?

The definition of integrable has many quantifiers, so it is not so nice to work with.

We can eliminate some of the quantifiers using a sandwich-like idea. This is done using

Darboux sums.

Definition 11. Let f be a bounded function on [a, b] and P = {x0, . . . , xn} a partition

of [a, b]. For each i ∈ [n], let

mi = inf{f(x) : x ∈ [xi−1, xi]}, Mi = sup{f(x) : x ∈ [xi−1, xi]}.

The upper Darboux sum is

U(f, P ) =
n∑
i=1

(xi − xi−1)Mi.
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The lower Darboux sum is

L(f, P ) =
n∑
i=1

(xi − xi−1)mi.

The first observation is:

Exercise 12. For all f, P as above, for every choice of evaluation points t,

L(f, P ) ≤ S(f, P, t) ≤ U(f, P ).

So, we can control the Riemann sum from both sides by the two Darboux sums.

We get two new notions of integrals.

Definition 13. The upper (Darboux) integral of a f is∫ b

a

f(x)dx = inf{U(f, P ) : P}

and the lower (Darboux) integral is∫ b

a

f(x)dx = sup{L(f, P ) : P},

where P is a partition of [a, b].

Exercise 14. If f is bounded, both Darboux integrals are finite.

Our first goal is to show that the names “upper” and “lower” and indeed correct.

Theorem 15.
∫ b
a
f(x)dx ≤

∫ b
a
f(x)dx.

The theorem follows from the following lemma (the formal proof of the theorem from

the lemma is left as an exercise).

Lemma 16. For every two partitions P1, P2 of [a, b] we have

L(f, P1) ≤ U(f, P2).

Proof. To prove the lemma, we shall use the notion of refinements.

Definition 17. A partition Q refines P if P ⊂ Q as sets.
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We claim that if Q refines P then

U(f,Q) ≤ U(f, P ).

Indeed, let Q = {x0 < . . . < xn} and let P = {xi0 < . . . < xik}. For j ∈ [k], let

Tj = {t ∈ [n] : ij−1 < t ≤ ij}.

The sets Tj partition [n]. Now,

U(f,Q) =
k∑
j=1

∑
t∈Tj

(xt − xt−1) sup{f(x) : x ∈ [xt−1, xt]}

≤
k∑
j=1

∑
t∈Tj

(xt − xt−1) sup{f(x) : x ∈ [xij−1
, xij ]}

=
k∑
j=1

sup{f(x) : x ∈ [xij−1
, xij ]}

∑
t∈Tj

(xt − xt−1)

=
k∑
j=1

sup{f(x) : x ∈ [xij−1
, xij ]}(xij − xij−1

)

= U(f, P ).

Similarly,

L(f,Q) ≥ L(f, P ).

We are done since

L(f, P1) ≤ L(f, P1 ∪ P2) ≤ U(f, P1 ∪ P2) ≤ U(f, P2).

The following theorem provides some characterization of integrability.

Theorem 18. Let f be bounded in [a, b]. The following are equivalent:

1. f is Riemann integrable in [a, b].

2.
∫ b
a
f(x)dx =

∫ b
a
f(x)dx.

3. For every ε > 0, there is a partition P of [a, b] so that

U(f, P )− L(f, P ) ≤ ε.
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Proof. The fact that 2 and 3 are equivalent is left as an exercise.

I. Let us now show that 1 ⇒ 3. Assume 1 holds. Let P = {x0, . . . , xn} be so that

|S(f, P, t)− I| ≤ ε/4 for all t. For each i ∈ [n], let ti be so that

f(ti) ≥Mi −
ε

4(n+ 1)
;

it exists by definition of supremum. Thus,

U(f, P ) ≥ S(f, P, t) ≥ U(f, P )− (n+ 1)
ε

2(n+ 1)
≥ U(f, P )− ε

4
.

So, U(f, P ) is ε/2-close to I. Similarly, L(f, P ) is ε/2-close to I.

II. The most difficult part is 2 + 3⇒ 1. So assume 2 and 3 hold. Let B be a bound on

|f(x)| for x ∈ [a, b]. Let ε > 0. Let I =
∫ b
a
f(x)dx. We want to that if δ > 0 is small

enough then every P with D(P ) ≤ δ satisfies |S(f, P, t)− I| ≤ ε for all t.

Let P ∗ = {x∗0, . . . , x∗k} be so that

U(f, P ∗)− L(f, P ∗) ≤ ε/2.

Thus, |L(f, P ∗)− I|, |U(f, P ∗)− I| ≤ ε/2.

Let P = {x0, . . . , xn} be so that D(P ) ≤ δ and also choose t, where δ > 0 will be

determined below. Let

I = {i ∈ [n] : ∃j x∗j ∈ [xi, xi−1]};

draw P above P ∗ to see the meaning. Note that

|I| ≤ k + 1.

Now,

S(f, P, t) =
∑
i

f(ti)(xi − xi−1)

=
∑
i∈I

f(ti)(xi − xi−1) +
∑
i 6∈I

f(ti)(xi − xi−1)

≤ 2δB(k + 1) + U(f, P ∗);

to understand the last inequality, use:

1. Each ti belongs to an interval [x∗j−1, x
∗
j ] and f(ti) ≤Mj.

2.
∑

i 6∈I(xi−xi−1) is not b−a. The part that is missing may contribute at most twice
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the absolute value of the area of the “I rectangles” which is at most 2δB(k + 1).

Similarly,

S(f, P, t) ≥ −2δB(k + 1) + L(f, P ∗).

Choose δ so that

δB(k + 1) ≤ ε/4.

Thus,

−ε ≤ L(f, P ∗)− I − ε/2 ≤ S(f, P, t)− I ≤ U(f, P ∗)− I + ε/2 ≤ ε.

Applications

We can now prove general statements about integrability.

Theorem 19. If f is continuous in [a, b] then it is integrable in [a, b].

Proof. Let ε > 0. Recall that a continuous function on a closed interval is uniformly

continuous; that is, there is δ > 0 so that if |x− y| ≤ δ then |f(x)− f(y)| ≤ ε.

Now, let P be a partition with D(P ) ≤ δ. Thus, for all i,

|Mi −mi| ≤
ε

b− a
.

By the triangle inequality,

|U(f, P )− L(f, P )| ≤
∑
i

|Mi −mi|(xi − xi−1) ≤ ε.

Theorem 20. If f is monotone in [a, b] then it is integrable in [a, b].

Proof. Assume without loss of generality that f is non-decreasing. Let ε > 0. Let n

be large enough to be determined. Let P be the partition of [a, b] to n equal-length

intervals. Thus,

U(f, P )− L(f, P ) =
∑
i

(f(xi)− f(xi−1))
b− a
n

=
b− a
n

(f(b)− f(a)) ≤ ε,
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when n is large.

We have thus found two families of integrable functions. Recall that we saw that not

all functions are integrable.

We can actually extend the theorems as follows.

Theorem 21. If f is bounded in [a, b] and has a finite number of discontinuity points

then f is integrable on [a, b].

Draw an example.

Proof. Let a1 < a2 < . . . < an be the discontinuity points. In each of [a, a1 − δ], [a1 +

δ, a2 − δ], . . . the function is continuous for small enough δ > 0. Thus, f is integrable in

these intervals; let P1, P2, . . . , Pn+1 be partitions so that U(f, Pi)−L(f, Pi) ≤ ε/(2(n+1))

for all i. Note that U(f, Pi), L(f, Pi) are “on a subinterval”.

Let P =
⋃
i Pi. It is a partition of [a, b]. Denote by B a bound on |f | in [a, b]. Thus,

U(f, P ) ≤ U(f, P1) + 2δB + U(f, P2) + 2δB + . . .

≤ 2nδB + ε/2 + L(f, P1) + L(f, P2) + . . .

≤ 4nδB + ε/2 + L(f, P )

≤ ε+ L(f, P ),

for δ small enough.

Comment. Recall that a monotone function can have at most a countable number of

discontinuity points. Why? Essentially because the rationals are sense and countable,

and each continuity point can thus be described using a rational. Draw. Some monotone

functions have an infinite number of discontinuity points: f that is 2−i in [2−i, 2−i−1);

draw.

Measure zero

To give a characterization of integrability, we define a new notion.

Definition 22. A set X ⊂ R is covered by a countable collection of intervals A = {Ai}
if T ⊂

⋃
iAi. The length of A is

L(A) =
∑
i

|Ai|,

where |Ai| is the length of the interval (and the sum may be infinite).
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A set X ⊂ R has measure zero if

inf{L(A)} = 0,

where A is a collection of intervals as above.

Claim 23. If X is countable then it has measure zero.

Proof. Write X = {x1, x2, . . .}. Let Ai = [xi − ε/2i, xi + ε/2i]. Then,

1. A covers X.

2. L(A) =
∑

i 2ε/2
i = 2ε.

Comment. There are uncountable sets of measure zero (e.g. the Cantor set). They are

often related to fractals.

Theorem 24. A bounded function is integrable iff the set of its discontinuity points has

measure zero.

Properties of definite integrals

We discussed the basic definition of integrability. We will now list some of its useful

properties. Before that, we introduce some notation:∫ a

a

f(x)dx = 0

and ∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

The following is a list of theorems (some proofs are left as exercises):

1. If f is integrable in [a, b] then f is integrable in [c, d] ⊂ [a, b].

Proof. If f is integrable, for all ε > 0 there is P of [a, b] so that U(f, P )−L(f, P ) ≤
ε. By know properties of refinements, we may assume c, d ∈ P . Let Q1 = P ∩ [a, c],

Q2 = P ∩ [c, d], and Q3 = P ∩ [d, b]. Thus,

U(f,Q2)− L(f,Q2) ≤
∑
j

U(f,Qj)− L(f,Qj)

= U(f, P )− L(f, P ) ≤ ε.
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2. If f is integrable in [a, b] then for c ∈ [a, b] we have∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Proof. We already know that all three integrals exist. We thus know that there

are I0, I1, I2 with the relevant properties for [a, b], [a, c] and [c, b]. Let ε > 0, and

let δ = min{δ0, δ1, δ2}. Let P1, P2 be partitions of [a, c], [c, b] with diameter at most

δ. Let t1, t2 be evaluation points in P1, P2, and let t be the union of t1, t2. Thus,

ε ≥ |I0 − S(f, P1 ∪ P2, t)| = |I0 − S(f, P1, t1)− S(f, P2, t2)|

and for j ∈ {1, 2},

ε ≥ |Ij − S(f, Pj, tj)|.

This implies that I0 = I1 + I2.

Comment. This holds also if c 6∈ [a, b] and all integrals are defined. For this, we

use the convention above. The verification is left as an exercise.

3. If f, g are integrable in [a, b] then for all α, β ∈ R,∫ b

a

αf(x) + βg(x)dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx.

We know that the r.h.s. makes sense. The proof is similar to the previous one, and

is left as an exercise.

4. If f is integrable in [a, b] and g is continuous in an interval containing f([a, b]) then

h = g ◦ f is integrable in [a, b].

(Note that h is not necessarily continuous.)

Proof. Let ε > 0. Since g is continuous, it is uniformly continuous; there is δg > 0

so that if |x− y| ≤ δg then |g(x)− g(y)| ≤ ε. Since f is integrable, there is δf > 0

so that if D(P ) ≤ δf then

U(f, P )− L(f, P ) ≤ δg · ε.
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Let P = {x0, . . . , xn} be a partition with D(P ) ≤ δf . It suffices to prove that

U(h, P )− L(h, P ) =
∑
j

(Mh
j −mh

j )(xj − xj−1) ≤ (b− a+ 2B)ε,

where

B = sup{|h(x)| : x ∈ [a, b]}.

Partition the sum over j to two parts over

J1 = {j ∈ [n] : M f
j −m

f
j ≤ δg}

and

J2 = [n] \ J1.

First, ∑
j∈J1

(Mh
j −mh

j )(xj − xj−1) ≤
∑
j∈J1

ε(xj − xj−1) ≤ ε(b− a).

Second,

δg · ε ≥ U(f, P )− L(f, P )

≥
∑
j∈J2

(M f
j −m

f
j )(xj − xj−1)

>
∑
j∈J2

δg(xj − xj−1),

and so ∑
j∈J2

(Mh
j −mh

j )(xj − xj−1) ≤
∑
j∈J2

(|Mh
j |+ |mh

j |)(xj − xj−1) ≤ 2Bε.

5. The function x2 is integrable in any interval (it is continuous).

6. If f is integrable in [a, b] then f 2 is also integrable in [a, b] (composition).

7. If f, g are integrable in [a, b] then f · g is integrable in [a, b].

To prove, use:

f(x) · g(x) =
(f(x) + g(x))2 − f 2(x)− g2(x)

2
.
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8. If f is integrable in [a, b] and non-negative then
∫ b
a
f(x)dx ≥ 0.

The proof is left as an exercise.

9. If f, g are integrable in [a, b] and f(x) ≤ g(x) for all x ∈ [a, b] then
∫ b
a
f(x)dx ≤∫ b

a
g(x)dx.

To prove, use linearity and non-negativity of g − f .

10. If f is integrable in [a, b] then |f | is also integrable and∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.

To prove, use that |x| is continuous, and that integral respects order.

11. If f is continuous and non-negative in [a, b] and f(x0) > 0 for some x0 ∈ [a, b],

then ∫ b

a

f(x)dx > 0.

Explanation: There is δ > 0 so that f(x) > f(x0)/2 for all x ∈ [x0 − δ, x0 + δ].

Thus, for all P with D(P ) ≤ δ, we have L(f, P ) ≥ f(x0) · δ/2 so
∫ b
a
f(x)dx ≥

f(x0)δ/2 > 0; the partition contains at least half of the rectangle. Draw this;

there is a “noticeable bump.”

Comment. If f is not continuous, this theorem is false.

12. If f is integrable in [a, b], and g : [a, b]→ R is so that f(x) 6= g(x) for finitely many

x’s, then ∫ b

a

f(x)dx =

∫ b

a

g(x)dx.

Proof is left as an exercise.

13. Intermediate value theorem for integrals (general form):

Let f be integrable and continuous in [a, b] and let g be non-negative in [a, b].

Then, there is c ∈ [a, b] so that∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.

Comments.

I. Draw when g(x) = 1: a rectangle of same area as f has height f(c).
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II. If
∫ b
a
g(x)dx = 1 then we can think of g as a probability distribution on [a, b].

Then f(c) is the average value of f with respect to this distribution.

Proof. Since f is continuous, there are x1, x2 ∈ [a, b] so that for all x ∈ [a, b],

f(x1) ≤ f(x) ≤ f(x2).

and so since g(x) ≥ 0,

f(x1)g(x) ≤ f(x)g(x) ≤ f(x2)g(x).

Since integral is order preserving (we saw integrals are defined),

f(x1)

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(x2)

∫ b

a

g(x)dx.

Now, let

h(z) = f(z)

∫ b

a

g(x)dx.

The function h is continuous. The value
∫ b
a
f(x)g(x)dx is between h(x1) and

h(x2). By the intermediate value theorem, there is c ∈ [a, b] so that h(c) takes this

value.



Chapter 4

The fundamental theorem of

calculus

We now explain the connection between indefinite and definite integrals.

Definition 25. If f is integrable in [a, b] define the area cumulative function

F (x) =

∫ x

a

f(t)dt

for x ∈ [a, b].

We first show that integration makes functions “smoother.” Intuitively, integration

is an average quantity, and average quantities “tend to be smooth.”

Theorem 26. If f is integrable in [a, b] then F is continuous in [a, b].

Proof. Let x ∈ (a, b); a similar argument works for x ∈ {a, b}. For t ∈ [a, b], we have

|F (t)− F (x)| =
∣∣∣∣∫ t

x

f(y)dy

∣∣∣∣ ≤ B|t− x|,

where B = sup{|f(x)| : x ∈ [a, b]} <∞. So,

lim
t→x
|F (t)− F (x)| = 0.

We now prove:

Theorem 27 (Fundamental theorem of calculus). Assume f is continuous in [a, b] and

that F (t) =
∫ t
a
f(x)dx. Then, F is differentiable and F ′(x) = f(x) for all x ∈ (a, b).

27
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This shows that if f(x) is continuous then
∫ x
a
f(t)dt is an indefinite integral of it.

First, we provide some intuition. Assume F is differentiable: One one hand,

F (x+ δ)− F (x) ≈ δF ′(x).

On the other hand, pictorially

F (x+ δ)− F (x) ≈ δf(x).

Proof. Let x ∈ (a, b). Let us start with limit from right. What is

lim
z→x+

F (z)− F (x)

z − x
= lim

z→x+

∫ z
x
f(y)dy

z − x
?

Use sandwich. For every z ≥ x, denote

Mz = sup{f(y) : x ≤ y ≤ z}, mz = inf{f(y) : x ≤ y ≤ z}.

The continuity of f implies that

lim
z→x+

Mz = lim
z→x+

mz = f(x).

Taking the limit limz→x+ of all parts in

mz =

∫ z
x
mzdy

z − x
≤
∫ z
x
f(y)dy

z − x
≤
∫ z
x
Mzdy

z − x
= Mz,

we get the correct answer. A similar argument works for limit from left, and completes

the proof.

Prove/disprove.

1. If f has an antiderivative then f is integrable.

Hint: If f has an antiderivative then f is bounded.

The function

f(x) =

{
x2 sin(1/x2) x 6= 0

0 x = 0

is differentiable in [−1, 1] but its derivative is unbounded.

2. If f is integrable then f has an antiderivative.
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Continuity of f is essential. For example, the integral of the function that is −1

on [−1, 0) and 1 on [0, 1] has a “corner” at 0.

Computing areas

This connection allows to compute areas.

Theorem 28 (Newton-Leibnitz). If f is continuous in [a, b] and G is so that G′ = f in

(a, b) then ∫ b

a

f(x)dx = G(x)
∣∣∣b
a

:= G(b)−G(a).

Intuition. Assume G′ = f and we want to compute the integral of f . Choose a

partition and evaluation points: for all i,

f(ti) = G′(ti) ≈
G(xi)−G(xi−1)

xi − xi−1
,

so ∑
i

f(ti)(xi − xi−1) ≈
∑
i

G(xi)−G(xi−1) = G(b)−G(a).

Proof. By fundamental theorem, the derivative of F (t) =
∫ t
a
f(x)dx is f . So1, (F−G)′ =

0 in (a, b) which implies F = G+ c for some constant c. So,

0 = F (a) = G(a) + c

and ∫ b

a

f(x)dx = F (b) = G(b) + c = G(b)−G(a).

Example. This is very useful; we can now compute areas (so far we had no general

way to do so, other than computing the limit). For example, we can calculate area of

circle, which is four times∫ 1

0

√
1− x2dx =

1

2
x
√

1− x2 +
sin−1(x)

2

∣∣∣∣1
0

= π/4.

1We recall the following claim: if h′ = 0 in [a, b] then h is constant. Why? If h(x1) 6= h(x2) for

x1 < x2 in [a, b] then we know h′(c) = h(x1)−h(x2)
x2−x1

6= 0 for some c.
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We see that using this technology π, which is defined as the boundary length of half a

circle, comes up naturally as the area of a circle.

Comment. Newton-Leibnitz also holds when f is integrable and G′ = f except finitely

many points. We will not prove it.

Derivatives when endpoints change

If H(t) =
∫ b(t)
a(t)

f(x)dx with a, b differentiable and F ′ = f then

H(t) = F (b(t))− F (a(t)).

Thus, by the chain rule,

H ′(t) = f(b(t))b′(t)− f(a(t))a′(t).

Taking such derivatives is actually easy, for example,

d

dt

∫ t2

cos(t)

ex
2

dx = et
4

2t+ ecos
2(t) sin(t).

By parts

Theorem 29. If f, g are integrable, g differentiable, g′ integrable, and F ′ = f in [a, b]

then ∫ b

a

f(x)g(x)dx = F (b)g(b)− F (a)g(a)−
∫ b

a

F (x)g′(x)dx.

Explanation. We know that h′ = fg with

h = Fg −
∫
F (x)g′(x)dx.

So, the l.h.s. is h(b)− h(a), which is exactly the r.h.s. . . .

Example. ∫ e

1

ln(x)dx = x ln(x)
∣∣∣e
1
−
∫ e

1

x · 1

x
dx = e− 0− (e− 1) = 1.
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Substitution

Theorem 30. Let f, g be functions. If f is continuous in a closed interval containing

g([a, b]), g is differentiable, and g′ integrable in [a, b] then∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(y)dy.

Proof. Let F be so that F ′ = f ; it exists since f is continuous. Thus,

(F (g(x)))′ = f(g(x))g′(x).

So, both sides of equality are F (g(b))− F (g(a)).

Applications

Position and speed.

Imagine a particle moving on the real line (one dimensional for simplicity). If x(t)

denotes the position on the line of a particle at time t, then v(t) = x′(t) is its speed at

time t and x(t) =
∫ t
0
v(s)ds.

This gives further motivation for considering “negative area” since a negative position

is natural.

Energy.

If we want to move a suitcase from height 0 to height h, we need to invest energy – use

a force to overcome gravity. The energy or work we need to invest is
∫ h
0
mgdx = mgh,

where by physics mg is the gravity force; m is the mass and g is the earth gravity

(roughly, 9.81). This is called potential energy.

Computing the area between two graphs.

Say we want to compute the absolute value of the area between the graphs of x and x2

between 0 and 2. Draw.

area =

∫ 1

0

x− x2dx+

∫ 2

1

x2 − xdx =
1

2
− 1

3
+

8

3
− 1

3
− 4

2
+

1

2
= 2.



32 CHAPTER 4. THE FUNDAMENTAL THEOREM OF CALCULUS

Length of a line.

Say we want to compute the length of a graph of a function f , not the area under it (we

need f to be “smooth enough”). How can we do it?

First, we need to define it. The idea is similar to Riemann integrability. We approx-

imate the length as follows: Let P be a partition of [a, b]. Let

L(f, P ) =
n∑
i=1

distance from (xi−1, f(xi−1)) to (xi, f(xi)) (length of lines)

=
n∑
i=1

√
(xi − xi−1)2 + (f(xi)− f(xi−1))2

=
n∑
i=1

√
1 +

(
f(xi)− f(xi−1)

xi − xi−1

)2

· (xi − xi−1).

Draw this.

What does this converge to (if it does)?∫ b

a

√
1 + (f ′(x))2dx.

We now make it formal.

Definition 31. Let f be a function on [a, b]. We say that the graph of f has a length

in [a, b] if there is ` ∈ R so that for all ε > 0, there is δ > 0 so that for every partition

P of [a, b] with D(P ) < δ,

|L(f, P )− `| ≤ ε.

Theorem 32. If f is continuously differentiable in [a, b] then the length of its graph in

[a, b] is ∫ b

a

√
1 + (f ′(x))2dx.

Proof. The function g =
√

1 + (f ′(x))2 is continuous and hence integrable. By La-

grange’s theorem, for all P , there is t so that for all i,

f ′(ti) =
f(xi)− f(xi−1)

xi − xi−1
,

which implies

L(f, P ) = S(g, P, t).

Since g is integrable, the graph of f has length.
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Example. Try to use this formula to calculate the circumference of a unit circle (twice

the length of the function
√

1− x2 from −1 to 1).

Computing limits.

All of this technology also help to compute limits. Here is an example: what is

lim
n→∞

1

n+ 1
+

1

n+ 2
+ . . .+

1

3n
?

The idea is to write
1

n+ k
=

1

1 + k/n

1

n
.

So, this limit is

lim
n→∞

1

n+ 1
+

1

n+ 2
+ . . .+

1

3n
= lim

n→∞

3n∑
k=1

1

1 + k/n

1

n
,

which is a Riemann sum of 1/(1 + x) for x from 0 to 3. This function is integrable, so

this limit is ∫ 3

0

1

1 + x
dx = − 1

(1 + x)2

∣∣∣∣3
0

= − 1

16
− (−1) =

15

16
.

Approximations.

As we mentioned, some functions do not have elementary integrals, and for some the

integrals are just very hard to compute. In many cases, we can use approximations.

Assume we want to compute
∫ b
a
f(x)dx, but it is too complicated. We know we can

approximate f be a polynomial (Taylor a.k.a. MacLaurin) Tn, so we can approximate

the integral by
∫ b
a
Tn(x)dx.
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Chapter 5

Generalized integrals

So far we have considered areas of bounded domains. What about unbounded domains?

The idea is to use a limit to “approximate” the unbounded domain by bounded ones.

A ray

Definition 33. If f is defined in [a,∞) and f is integrable in [a, b] for all b, we say that

f is integrable over [a,∞) if the limit

lim
b→∞

∫ b

a

f(x)dx

exists, and then we denote it by ∫ ∞
a

f(x)dx.

Examples:

1. ∫ ∞
1

1

x2
dx = lim

b→∞

−1

b
+ 1 = 1.

This is an infinite body with a finite volume.

2.
∫∞
0

cos(x)dx does not exist.

Theorem 34. For p ∈ R, we have
∫∞
1

1
xp
dx <∞ if and only if p > 1.

Proof. If p > 1 then

lim
b→∞

∫ b

1

x−pdx = lim
b→∞
− 1

p− 1
x−p+1

∣∣∣∣b
1

=
1

p− 1
.

35
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When p ≤ 1, a similar calculation shows that it is infinite.

All the reals

Definition 35. The integral
∫∞
−∞ f(x)dx is defined if the two integrals of f on (−∞, 0]

and [0,∞) converge (are defined and finite). We can choose any other point instead of

0.

These are two different limits: It is not equivalent to that limR→∞
∫ R
−R f(x)dx exists,

e.g. for

f(x) =

{
1 x ≥ 0

−1 x < 0,

for every R the integral is 0 but the entire integral is not defined.

Open intervals

Another problematic case is e.g. when a is a vertical asymptote of f . In this case, we

use a limit too.

Definition 36. Assume f is defined in (a, b]. We say that f is integrable in [a, b] if the

limit

lim
c→a+

∫ b

c

f(x)dx

exists, and then we denote this limit by
∫ b
a
f(x)dx.

Example:∫ 1

0
1√
x
dx = limc→0+ 2

√
1− 2

√
c = 2.

Exercise 37. For which p ∈ R, the integral
∫ 1

0
1
xp
dx is finite?

Exercise 38. For which p ∈ R, the integral
∫∞
0

1
xp
dx is finite?

Note that to compute for example
∫∞
0

1/x2 we actually need to take 2 limits, not just

1 (a limit to 0 and a limit to infinity).

Comment:

A similar definition is used for [a, b), when f has a vertical asymptote at c ∈ [a, b], etc.
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Comparison

Sometimes it is difficult to see if
∫∞
0
f(x)dx converges. Then, we can bound 0 ≤ f(x) ≤

g(x) for all x, and prove that the integral of g converges.

Theorem 39. Assume f, g are defined in [a,∞), that are integrable in [a, b] for all

b ≥ a, and that 0 ≤ f(x) ≤ g(x) for all x ≥ a. Then∫ ∞
a

f(x)dx ≤
∫ ∞
a

g(x)dx.

Specifically, if the integral of f diverges to ∞ then so does that of g, and if the

integral of g converges then so does that of f .

Example: The integral
∫∞
0
e−x

2
dx is defined (although we do not have a nice formula

for the anti-derivative) since 0 < e−x
2
< e−x for x > 1, and we know how to compute

the integral of e−x.

Proof. Denote F (t) =
∫ t
a
f(x)dx and G(t) =

∫ t
a
g(x)dx. These two functions are mono-

tone non decreasing, and F (t) ≤ G(t) for all t. Thus, the same holds for the limits.

Comment: To conclude that the integral of f is finite, it suffices that f(x) ≤ g(x) for

large enough x.

Comment: This is for a ray, state and prove the analog for an unbounded function.

Ratio test

Theorem 40. Assume f, g are defined in [a,∞) and are integrable in [a, b] for all b ≥ a,

and that

L = lim
x→∞

f(x)

g(x)

is so that 0 < L <∞. Then,
∫∞
a
f(x)dx exists iff

∫∞
a
g(x)dx exists.

Idea. For large x, we have
L

2
g(x) ≤ f(x) ≤ 2Lg(x).

Now use comparison ...
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Absolute convergence

When computing say
∫∞
−∞ f(x)dx we would like to have a condition that guarantees that

the integral is “well behaved.” (The importance of absolute convergence will become

clearer later on.)

Definition 41. The integral of f on [a,∞) absolutely converges if
∫∞
a
|f(x)|dx con-

verges.

This is a stronger condition than convergence.

Claim 42. If integral of f on [a,∞) absolutely converges then it converges.

Note that the claim is not completely obvious.

Proof. Write f = f+ + f−, where f+(x) = max{f(x), 0}. Since 0 ≤ f+(x) ≤ |f(x)| for

all x ≥ a, we know that the integral of f+ converges. A similar statement holds for f−.

Now, use linearity.

The other direction does not necessarily hold. Let us see an example. The following

integral converges ∫ ∞
1

sin(x)

x
dx =

parts
lim
b→∞
− cos(x)

x

∣∣∣∣b
1

−
∫ b

1

cos(x)

x2
dx,

and the two terms are finite; the second absolutely converges since | cos(x)| < 1 and

since the integral of 1/x2 converges (using comparison).

But it does not absolutely converge:∫ ∞
1

| sin(x)|
x

dx ≥ lim
b→∞

∫ b

1

sin2(x)

x
dx

= lim
b→∞

∫ b

1

(1− cos(2x))/2

x
dx (cos(2x) = 1− 2 sin2(x))

= lim
b→∞

∫ b

1

1

2x
dx−

∫ b

1

cos(2x)

2x
dx;

the left term diverges and the second converges.

Comment: Do not use integration by parts or substitutions for generalized integrals.

Use the definition.
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Generalization of example:

Theorem 43 (Dirichlet). Let f, g be functions on [a,∞). Assume that f is continuous

and that F (x) =
∫ x
a
f(t)dt is bounded. Assume that g is differentiable, that the integral of

g′ on [a,∞] absolutely converges, and that limx→∞ g(x) = 0. Then,
∫∞
a
f(x)g(x)dx <∞.

We get the example by setting f(x) = sin(x) and g(x) = 1/x.

Proof. For all b > a,∫ b

a

f(x)g(x)dx = F (x)g(x)
∣∣∣b
a
−
∫ b

a

F (x)g′(x)dx.

Taking the limit b → ∞, we get that (i) the left term tends to F (a)g(a) since F is

bounded and g tends to zero, and (ii) the right term absolutely converges since F is

bounded and the integral of g′ absolute converges.

Another variant:

Exercise 44 (Abel). Let f, g be functions on [a,∞). Assume that f is continuous and

that F (x) =
∫ x
a
f(t)dt is bounded. Assume that g is monotone and differentiable, and

that limx→∞ g(x) = 0. Then,
∫∞
a
f(x)g(x)dx <∞.

One more example

We have seen that if f(x) tends to zero “quickly” when x → ∞ then
∫∞
a
f(x)dx is

finite. Does the other direction holds? In general, no. There are continuous non-

negative functions f so that
∫ x
a
f(x)dx < ∞ but the limit limx→∞ f(x) does not exist

(specifically, it is not zero). For example, a “tents” function, that has a small “triangle”

around an integer n with base of length 2−n, and is zero otherwise. Draw some parts of

graph.

More cases: What if f is positive? What if f is monotone? What if f is uniformly

continuous? Etc.
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Chapter 6

Series

In the previous section, we have discussed integrals, which can be thought of as “sums

over continuous domains.” We now move to discuss discrete sums.

We are given a sequence of numbers a1, a2, . . . and we would like to give a formal

meaning to their sum (if it makes sense). For example, 1/2 + 1/4 + 1/8 + . . . = 1. Draw.

Definition 45. Let a1, a2, . . . be a sequence of real numbers. Define the partial sum

Sn = a1 + a2 + . . .+ an.

We call
∑∞

n=1 an a series. Define

∞∑
n=1

an = lim
n→∞

Sn,

if the limit exists. If the limit exists we say the series (“tur”) converges and write

|
∑∞

n=1 an| <∞, and otherwise we say it diverges.

The letter n just denotes the index of summation. It can also be m, k et cetera

(
∑∞

n=1 an =
∑∞

k=1 ak).

There are 2 different questions we can ask. One is “does the series converge?” A

more difficult one is “what is the limit?” We mostly focus on the easier question, but

provide some simple examples for the harder one. As for limits, we shall provide several

generals rules/tools the verify convergence.

Geometric series:

Let q ∈ R be so that |q| < 1. Let an = qn for n ≥ 0, and

Sn = 1 + q + q2 + . . .+ qn =
1− qn+1

1− q
.

41
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So,
∞∑
n=0

qn = lim
n→∞

Sn =
1

1− q
.

For example,
∞∑
n=0

(1/2)n = 2,

and
∞∑
n=0

(−1/2)n = 2/3.

If |q| ≥ 1 then the series diverges.

Telescopic sum:

What is
∞∑
n=1

1

n(n+ 1)
?

Write
1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Then, the series converges to

lim
n→∞

n∑
k=1

1

k
− 1

k + 1
= lim

n→∞
1− 1

n+ 1
= 1.

Non example:

Let

an =
1√
n
.

Then,

Sn ≥
n

2
· 1√

n/2
→∞,

when n→∞.

We see that although an → 0 the series does not converge. For convergence, we need

an to “go approach zero fast enough.” But it is a necessary condition.

If series converges, sequence tends to zero

Theorem 46. If
∑∞

n=1 an converges then limn→∞ an = 0.
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Proof. Write an = Sn − Sn−1 for n > 1. By arithmetic of limits,

lim
n→∞

an = lim
n→∞

Sn − lim
n→∞

Sn−1 = 0.

Properties that follow from limits’ properties

There are several properties that immediately follow from similar properties of limits.

The proofs are left as exercises.

Arithmetic

Theorem 47. If
∑∞

n=1 an and
∑∞

n=1 bn converge then

∞∑
n=1

(αan + βbn) = α
∞∑
n=1

an + β
∞∑
n=1

bn,

for all α, β ∈ R.

Cauchy criterion

Theorem 48.
∑∞

n=1 an converges iff for every ε > 0, there is N > 0 so that for all

n,m > N we have |Sn − Sm| < ε.

Comparison

As for integrals, we may prove that some series converge—even when we do not know

the limit—by comparing them to other series.

Theorem 49 (Comparison.). If an ≤ bn for all n then

∞∑
n=1

an ≤
∞∑
n=1

bn.

Positive sequences

The comparison test is useful to prove that monotone series converge.

Definition 50. A positive series is a series
∑∞

n=1 an with an > 0 for all n.
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Theorem 51. If
∑∞

n=1 an is positive then it converges iff the sequence of partial sums

Sn =
∑n

i=1 ai is bounded.

Proof. The sequence (Sn) is monotone. A monotone sequence converges iff it is bounded.

Example:
∑∞

n=1 1/n2. It is not easy to compute this limit, but the comparison test

shows that it converges:

0 <
∞∑
n=1

1/n2 ≤ 1 +
∞∑
n=2

1

n(n− 1)
< 3,

as we saw.

Example:
∞∑
n=1

sin(1/n2) ≤ C +
∞∑
n=1

2/n2 <∞

since sin(1/n2) < 2/n2 for large n. Note that it is a positive series, so it converges.

Comment: To use the comparison test to prove that
∑∞

n=1 an converges for positive

(an) from the knowledge that
∑∞

n=1 bn < ∞, you do not need to show that an ≤ bn for

all n, it suffices to prove that an ≤ Cbn for large n and some constant C > 0. This

specifically holds if an/bn → L with 0 < L <∞.

Convergence to zero of sequence is stronger

Claim 52. If (an) is positive, non-increasing and converging, then limn→∞ nan = 0.

Proof. By Cauchy’s criterion,

lim
n→∞

∑
n/2≤k≤n

ak = 0.

But, (n
2
− 1
)
an ≤

∑
n/2≤k≤n

ak.

Convergence tests

There are 2 simple tests the guarantee convergence, if (an) is positive. These test are

sufficient but not necessary conditions.
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Root test (Cauchy): If there is 0 < q < 1 so that (an)1/n ≤ q for every n then∑∞
n=1 an converges. Indeed,

0 ≤
∞∑
n=1

an ≤
∞∑
n=1

qn <∞.

Ratio test (Delamber): If there is 0 < q < 1 so that an+1

an
≤ q for every n then∑∞

n=1 an converges. Indeed, it follows by induction that an < qn, and we can apply the

previous argument.

Examples:

I. Let us consider
∞∑
n=1

2n + 4n

3n + 5n

in 3 different ways. The root test:(
2n + 4n

3n + 5n

)1/n

→ 4/5.

The ratio test:
(2n+1 + 4n+1)/(3n+1 + 5n+1)

(2n + 4n)/(3n + 5n)
→ 4/5.

The comparison test:

∞∑
n=1

2n + 4n

3n + 5n
≤

∞∑
n=1

2 · 4n

5n
≤ 2

∞∑
n=1

(4/5)n <∞.

In general, to use the comparison test, you need to find an upper bound that you already

proved that converges (like a geometric series).

II. For every A > 0,
∞∑
n=1

An

n!
<∞

since
An+1/(n+ 1)!

An/n!
= A/(n+ 1) < 1/2

for large enough n.
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Integral test:

Every series
∑∞

n=1 an can be represented by an integral of a function f on [1,∞) by

setting f(x) to be an on [n, n+ 1). We can use this idea to apply the tools we developed

for integrals to understand series as well.

Theorem 53. Assume that f is non increasing, non negative and integrable on [0,∞).

Then,
∞∑
n=1

f(n) ≤
∫ ∞
0

f(x)dx ≤
∞∑
n=0

f(n).

That is, if the integral diverges the sum diverges, and if the series converges then sum

converges.

Draw.

Proof. If x ∈ [k, k + 1) then f(k) ≥ f(x) ≥ f(k + 1). Integrating this over [k, k + 1),

f(k) ≥
∫ k+1

k

f(x)dx ≥ f(k + 1).

Sum this over k ≤ n,
n∑
k=0

f(k) ≥
∫ n+1

0

f(x)dx ≥
n+1∑
k=1

f(k).

Finally, use that
∑n

k=0 f(k) and
∫ n
0
f(x)dx are monotone, so converge iff bounded.

The harmonic series
∞∑
n=1

1/n ≥
∫ ∞
2

1/xdx =∞.

This is called the harmonic series. It diverges.

The integral test can actually give a hint on the value of the sum. We can also deduce

that
∑k

n=1 1/n is roughly ln(k).

More examples:

1.The series
∑∞

n=1 1/np converges iff p > 1.

2. Something we did not see:
∞∑
n=2

1

n(ln(n))q
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for q > 0. We use the integral test:∫ ∞
2

1

x(ln(x))q
dx =

y=ln(x),dy/dx=1/x

∫ ∞
ln(2)

1

yq
dy,

which converges iff q > 1 (also a lower bound holds). To conclude,

∞∑
n=2

1

n(ln(n))q

converges iff q > 1. So, for example,

∞∑
n=2

1

n ln(n)
=∞

and
∞∑
n=2

1

n(ln(n))2
<∞.

3. There are function so that
∫∞
1
f(x)dx converges but

∑∞
n=1 f(n) diverges. E.g., a

variant of the “tents” function.

Sparsity test:

Theorem 54. If (an) is positive and non-decreasing then
∑∞

n=1 an converges iff
∑∞

n=1 2na2n

converges.

Proof. Let (Sn) be the partial sums of
∑

n an and (Tn) be the partial sums of
∑

n 2na2n .

It holds that

S2n = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + (a8 + . . .

≤ a1 + Tn + a2
n

≤ 2a1 + Tn.

Similarly,

22n ≥ Tn
2
.
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Example:
∑∞

n=1
1
np converges iff

∞∑
n=1

2n
1

2np
=
∞∑
n=1

(
1

2p−1

)n
converges iff p > 1; this is a geometric series.

Exercise: Use for
∑∞

n=2
1

n(lnn)q
.

There are more tests—we shall not cover.

Signs matter

When there is a series that is not positive, it is easier to work with it if the series

absolutely converges.

Definition 55. A series
∑∞

n=1 an absolutely converges if
∑∞

n=1 |an| converges. Other-

wise, we say it conditionally converges.

Theorem 56. If
∑∞

n=1 an absolutely converges then it converges.

Hint. Similarly to integrals; the details are left as an exercise.

The other direction does not hold in general. The sequence
∑∞

n=1(−1)n/n does not

absolutely converges but it does converge. For every n, let

Sn = (−1)1/1 + (−1)2/2 + . . .+ (−1)n/n

= −1 + 1/2− 1/3 + 1/4− 1/5 + 1/6− . . .+ (−1)n/n

= −1/2− 1/12− 1/30− . . .− 1

2i(2i+ 1)
− . . .+ (−1)n/n.

This is a negative sum, except perhaps the last term that tends to 0. The negative

sum is bounded from below by −
∑∞

n=1
1
n2 > −∞ as we saw, so the sequence indeed

converges.

A generalization

In fact, the following always holds.

Theorem 57 (Leibnitz). If (an) is positive, non-increasing and tends to zero then∑∞
n=1(−1)nan converges.

We shall prove a more general theorem later on.
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Examples:

1. For all p > 0 the sum
∑∞

n=1(−1)n/np converges (as we saw for some p, it does not

absolutely converges).

2. The series
∑∞

n=1 x
n/n converges for |x| < 1, diverges for |x| > 1, converges for

x = −1 and diverges for x = 1.

Comment:

Monotonicity is important (if a2k = 1/k and a2k+1 = 1/k2 then the alternating sum does

not converge).

More generalizations

More generally, we are interested in understanding when does
∑

n anbn converge. This

is similar to the integral of a product, which we can analyze using integration by parts.

Theorem 58 (Summation by parts). For all (an)∞n=1 and (bn)∞n=1, let b0 = 0 and for all

n ≥ 0 let Bn =
∑n

k=0 bk, then

n∑
k=1

akbk = anBn −
n−1∑
k=1

Bn(an+1 − an).

Proof.

n∑
k=1

akbk =
n∑
k=1

ak(Bk −Bk−1)

=
n∑
k=1

akBk −
n−1∑
k=0

ak+1Bk

= anBn −
n−1∑
k=1

Bk(ak+1 − ak).

Leibnitz’s theorem has two generalizations, similarly to the two convergence theorems

for integrals we saw.

Theorem 59 (Dirichlet). Let (an) and (bn) be sequences. Assume that (an) tends to

zero and
∑∞

n=1 |an+1−an| <∞. Assume that the sequence of partial sums Bn =
∑n

k=1 bi
is bounded. Then,

∑∞
n=1 anbn converges.
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Proof. By the summation by parts formula:

n∑
k=1

akbk = Bnan −
n−1∑
k=1

Bk(ak+1 − ak)

we see that the left term tends to zero and the second term absolutely converges as

n→∞.

Another generalization is:

Theorem 60 (Abel). Assume
∑∞

n=1 bn converges, and that (an) is bounded and mono-

tone, then
∑∞

n=1 anbn converges.

Proof. By the summation by parts formula:

n∑
k=1

akbk = Bnan −
n−1∑
k=1

Bk(ak+1 − ak).

The left term converges by limit of product: Bn converges by assumption and an is

monotone and bounded. The right term absolute converges: since |Bk| ≤ M for all k

for some M ,

n−1∑
k=1

|Bk(ak+1 − ak)| ≤M
n−1∑
k=1

|ak+1 − ak|

= M

∣∣∣∣∣
n−1∑
k=1

(ak+1 − ak)

∣∣∣∣∣ ((an) is monotone)

= M |an − a1| <∞.

Operations

Parenthesis

If

a1 + a2 + a3 + a4 + a5 + . . .

converge, does it mean that

(a1 + a2) + (a3 + a4 + a5) + . . .
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converge? Yes; the partial sums in the latter series form a sub-sequence of the partial

sums of the former series.

If

a1 + a2 + a3 + a4 + a5 + . . .

diverges, does it mean that

(a1 + a2) + (a3 + a4 + a5) + . . .

diverge? No; for example 1− 1 + 1− 1 + . . .

Changing order

If

a1 + a2 + a3 + a4 + a5 + . . .

converge, does it mean that

a4 + a1 + a300 + a2 + a17 + . . .

converge? In general, no. In fact, the following can happen:

Theorem 61 (Riemann). If
∑∞

n=1 an conditionally converges, then for every x ∈ R
there is permutation π : N→ N so that

∑∞
n=1 aπ(n) = x.

We can also re-arrange order to that it diverges to ∞ or does not converge at all.

Idea. For simplicity, denote by pn be the positive part of (an), and sn be the negative

part. Thus, both (pn) and (sn) tend to zero, and
∑

n pn =∞ and
∑

n sn = −∞.

Now, let n1 be the minimum integer so that Pn1 =
∑

n≤n1
pn > x. Let m1 be

the minimum so that Pn1 + Sm1 < x. Let n2 ≥ n1 be the minimum after n1 so that

Pn2 + Sm1 > x. And so forth.

The partial sums B1 = Pn1 , B2 = Pn1 + Sm1 , . . . tends to x, since the difference

between Bk and x is some ank
, which tends to zero as k →∞.

However, absolutely converging sequences are more robust.

Theorem 62. If
∑∞

n=1 an absolutely converges then for every permutation π : N → N
the series

∑∞
n=1 aπ(n) converges to the same limit.

Proof. We can assume that (an) is positive, by considering each of its parts separately if

needed. Thus, S =
∑∞

n=1 an is the supremum of the partial sums, and so is
∑∞

n=1 aπ(n);
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since for all n, there is N so that

n∑
k=1

ak ≤
N∑
k=1

aπ(k) ≤ S.

Exercise 63. Assume A =
∑∞

n=1 an and B =
∑∞

n=1 bn absolutely converge. Let π : N→
N× N be a bijection. Define pn = a(π(n))1 · b(π(n))2. Then

∞∑
n=1

pn = AB.

This can be thought of as

∞∑
n=1

∞∑
m=1

anbm =
∞∑
m=1

∞∑
n=1

anbm =
∞∑
n=1

an ·
∞∑
m=1

bm.

Summary

We talked about series, two types of convergence, several tests for convergence, etc. We

saw a connection between series and integrals. We now start to apply these ideas to

study functions.
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Sequences of functions

Here we will consider sequences of functions (fn), each defined over [a, b]. We would like

to understand the limit of this sequence, when does it exist, in what sense, what are its

properties, etc.

Pointwise convergence

Definition 64. The sequence of functions (fn) defined over I pointwise converge if for

every x ∈ [a, b] the sequence fn(x) converges.

Example

The sequence of functions fn(x) = xn pointwise converge on [0, 1]. The limit is 0 on

[0, 1) and 1 at 1; it is not continuous.

Uniform convergence

A stronger meaning for convergence is:

Definition 65. A sequence of functions (fn) on I uniformly converge to a function f

on I if for every ε > 0, there is N so that for all n > N and for all x ∈ I we have

|f(x)− fn(x)| < ε.

Pictorially, this means that fn is in a strip of width 2ε around f , for large enough n.

Example:

The functions fn(x) = 1
x2+n

. They pointwise converge to the zero function. The also

uniformly converge to 0:

|fn(x)− 0| = 1

x2 + n
≤ 1

n
≤ ε,

53
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if n ≥ 1/ε.

Exercise 66. The sequence (fn) uniformly converge on I = [a, b] iff the sequence an =

supx∈I |fn(x)− f(x)| converges to zero as n tends to infinity.

Example

The sequence xn(1−xn) pointwise converges to zero on [0, 1], but supx∈[0,1] x
n(1−xn) =

1/4, so it does not uniformly converge.

Continuity

Theorem 67. If (fn) uniformly converge to f on [a, b] and each is continuous, then f

is continuous.

We can conclude that xn do not uniformly converge on [0, 1].

Proof. Let x0 ∈ [a, b]. Let ε > 0. Let N be so that for every n > N and x ∈ I we have

|fn(x)− f(x)| < ε. Fix n > N . The function fn is continuous. So, there is δ > 0 so that

if |x− y| < δ then |f(x)− f(y)| < ε. Thus,

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| ≤ 3ε.

Integrability

Theorem 68. If (fn) uniformly converge to f on [a, b], and each is integrable then

f is integrable and
∫ b
a
f(x)dx = limn→∞

∫ b
a
fn(x)dx. Moreover, if we define Fn(x) =∫ x

a
f(x)dx and F (x) =

∫ x
a
f(x)dx then (Fn) uniformly converges to F on [a, b].

Proof. The proof of the first part is similar to the proof of continuity.

The second part holds since

|F (x)− Fn(x)| ≤
∫ x

a

|f(t)− fn(t)|dt ≤ ε(b− a),

for n > N(ε).

Comment

There is a sequence of integrable functions that converge to a non-integrable function;

this is not uniform convergence.
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Monotonicity

Definition 69. A sequence of functions (fn) on [a, b] monotonically converges to f if

fn+1(x) ≥ fn(x) for all n and x ∈ [a, b], or if fn+1(x) ≤ fn(x) for all n and x ∈ [a, b].

Pictorially, fn are bigger than f , and get closer and closer to it.

Theorem 70 (Dini). If (fn) is monotone, continuous and pointwise converges in [a, b]

to a continuous function f then it also uniformly converges.

Proof. By considering fn − f , we may assume that f is the zero function. Assume also

that the sequence is non-increasing. Assume towards a contradiction that the theorem

is false.

Thus, the limit of supx∈[a,b] fn(x) is not zero. So, there is a sequence n1 < n2 < . . .

and ε > 0 so that fnk
(xnk

) ≥ ε for all k.

There is a subsequence of xnk`
that converges to some x0 ∈ [a, b], by compactness.

Now, if m ≤ nk we have

fm(xnk
) ≥ fnk

(xnk
) ≥ ε,

and since fm is continuous

ε ≤ lim
`→∞

fm(xnk`
) = fm(x0).

So, limm→∞ fm(x0) 6= 0, a contradiction.

Exercise 71. Find examples where the theorem fails when

(i) f is not continuous,

(ii) we replace [a, b] by (a, b), or

(iii) we do not assume monotonicity.

Differentiability

We have seen that uniform convergence “respects” continuity and integrability. What

about differentiability? In general, it does not. The reason is the we can make huge

slopes within tiny regions. For example, there is a sequence of differentiable functions

(fn) that uniformly converge to |x| on [−1, 1]. (Try to find such a sequence.1)

Even when the limit function is differentiable, it does not mean that (f ′n) converge.

For example, fn(x) = sin(n2x)
n

uniformly converges to zero, which is of course differen-

tiable, but f ′n(x) does not converge.

The following theorem describes sufficient conditions for f ′n to converge to f ′.

1|x|1+1/n.
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Theorem 72. Let (fn) be a sequence of continuously differentiable functions on an

interval I. Assume that (i) (f ′n) uniformly converge to φ on I, and that (ii) the sequence

(fn(x0)) converges for some x0 ∈ I. Then, fn uniformly converges to a differentiable f

on I, and f ′ = φ.

Proof. On one hand, by uniform convergence, we know that φ is continuous. By the

integration theorem, the limit of
∫ x
x0
f ′n(t)dt is

∫ x
x0
φ(t)dt and this convergence is uniform.

On the other hand, for all n, we have
∫ x
x0
f ′n(t)dt = fn(x)− fn(x0). So the sequence

(fn(x)) uniformly converges to f(x) =
∫ x
x0
φ(t)dt + C with C = limn→∞ fn(x0). In

particular, f ′ = φ.

Series of functions

We defined from a sequence (an) a series
∑

n an. We now do a similar thing for functions.

Definition 73. A series of functions is an expression of the form
∑∞

n=0 fn(x) for some

sequence of functions (fn) on I.

We have three types of convergences.

Definition 74.

• A series of functions
∑∞

n=0 fn(x) pointwise converges to f(x) on I if the sequence

of partial sums Sn(x) =
∑n

k=0 fk(x) pointwise converges to f .

• It uniformly converges to f if (Sn) uniformly converges to f .

• It absolutely converges if
∑∞

n=0 fn(x) absolutely converges for all x ∈ I.

The definition is via the convergence of a sequence of functions. So, all theorems we

proved about the convergence of a sequence of functions hold in this case.

Theorem 75.

1. If
∑∞

n=0 fn uniformly converges to S and each fn is continuous at x0 ∈ I then S

is continuous at x0.

2. If
∑∞

n=0 fn uniformly converges to S and each fn is integrable on [a, b] then S is

integrable on [a, b] and
∫ b
a
S(x)dx =

∑∞
n=0

∫ b
a
fn(x)dx.

3. If (fn) is non-negative and continuous in I and
∑∞

n=0 fn(x) pointwise converge to

a continuous S on I then the convergence is uniform.

4. If (fn) is a sequence of continuously differentiable functions in I so that (f ′n) uni-

formly converges on I and
∑∞

n=0 fn(x0) converges for some x0 ∈ I then S =∑∞
n=0 fn on I, this convergence is uniform, and S ′ =

∑∞
n=0 f

′
n on I.



57

Comment

This theorems are not at all obvious; changing order of infinite summations does not

always work, and similarly for changing order of differentiating.

Another criterion

For series we have an extra criterion:

Theorem 76 (Weirstrass). If (fn) is a sequence of functions on I so that for all n there

is Mn so that for all x ∈ I we have |fn(x)| ≤ Mn, and
∑∞

n=0Mn < ∞, then
∑∞

n=0 fn
uniformly and absolute converges on I.

Proof. Let Sn =
∑n

k=0 fn. For every x ∈ I, let S(x) = limn→∞ Sn(x), which exists due

to absolute convergence. Let ε > 0. For all x ∈ I,

|Sn(x)− S(x)| ≤
∑
k>n

Mk ≤ ε

for n large enough, since the series
∑

nMn converges.

Examples

1.
∑∞

n=0 2−n sin(3nx) absolutely and uniformly converges to a continuous function S.

Weirstrass showed that it is not differentiable everywhere (intuition: if it was then

the derivative should be
∑

n(3/2)n cos(3nx)).

2.
∑∞

n=0 x
n uniformly and absolutely converges in [−2/3, 2/3] to 1

1−x .

Derivatives:
d

dx

1

1− x

∣∣∣∣
x=1/2

=
1

(1− 1/2)2
= 4.

By the derivatives theorem, this is equal to

∞∑
n=0

d

dx
xn

∣∣∣∣∣
x=1/2

=
∞∑
n=0

n(1/2)n−1.

Integration: ∫ 1/2

0

1

1− x
dx = ln(1− 0)− ln(1− 1/2) = ln 2.
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By the integration theorem, this is equal to

∞∑
n=0

∫ 1/2

0

xndx =
∞∑
n=0

(1/2)n+1

n+ 1
.

Power series

We now use these ideas to represent functions in a useful way.

Definition 77. A power series is an expression of the form
∑∞

n=0 an(x− x0)n.

It is the series defined by the sequence of functions (an(x− x0)n). A power series is

a “polynomial of infinite degree.” We can sometimes think of it as a function of x, but

this does not always make sense, and we need to understand when it does.

Example

1 + x+ x2 + . . . =
∞∑
n=0

1 · (x− 0)n.

This makes sense as a function only for x ∈ (−1, 1). For such x,

1 + x+ x2 + . . . =
1

1− x
.

Domain of convergence

As mention, a power series does not always make sense. Therefore, we mark the domain

of convergence:

Definition 78. The domain of convergence D ⊆ R of
∑∞

n=0 an(x − x0)n is the set of

x ∈ R for which the sum converges.

Examples

1. The domain of
∑∞

n=0 x
n is (−1, 1).

2. The domain of
∑∞

n=0 x
n/n! is R, by Weirstrass criterion.

3. The domain of
∑∞

n=0 x
n/n is [−1, 1).

4. The domain of
∑∞

n=0 x
2n/(2n) is (−1, 1); it is equal to

∑∞
n=0(x

2)n/n so converges

iff x2 < 1 or |x| < 1.

We see that “the smaller the coefficients are, the larger to domain is,” but even for

this intuition there are exceptions.
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Radius of convergence

The domain of convergence has a special structure that we now explore.

Definition 79. The radius of convergence of
∑∞

n=0 an(x − x0)n is the supremum over

all r > 0 so that for every x so that |x− x0| < r the series converges.

The following theorem relates the domain of convergence to the radius of convergence.

Theorem 80. For every power series
∑∞

n=0 anx
n there is 0 ≤ R ≤ ∞ so that for every

x so that |x| < R the series converges at x, and for every x so that |x| > R it diverges.

Comments

1. At the two points ±R the sum may converge or diverge.

Example:

The radius of both
∑∞

n=0 x
n/n and

∑∞
n=0 x

n/n2 is one.∑∞
n=0 x

n/n diverges at 1 and converges at −1.∑∞
n=0 x

n/n2 converges at 1 and −1.

2. We allow R to be infinity as well. If R = ∞ the sum always converges. If R = 0

the sum does not converge for x 6= 0.

3. When x0 6= 0, we need to “translate” by x0.

To prove the theorem, we first prove a lemma.

Lemma 81. If
∑∞

n=0 anx
n converges at α ∈ R then for all 0 ≤ r < |α| the series

uniformly and absolutely converges in [−r, r].

Proof of lemma. Since
∑∞

n=0 anα
n converges, we know that there exists M > 0 so that

for all n we have |anαn| ≤M . Now, for x ∈ [−r, r], we have

|anxn| = |anαn|
∣∣∣x
α

∣∣∣n ≤M
∣∣∣ r
α

∣∣∣n .
We can now use Weirstrass criterion; this is a geometric sum with parameter less than

one.

Proof of theorem. The lemma implies that the domain of convergenceD has the property

that if α ∈ D then (−|α|, |α|) ⊂ D. So, R = sup{|α| : α ∈ D}.

The following tells us how to compute the radius.
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Theorem 82 (Cauchy-Hadamard). With the same notation as in the theorem above:

Let2

L = lim sup
n→∞

|an|1/n

then

R =
1

L
.

(If L = 0 then R =∞.) Similarly, if the following limit exists

L = lim
n→∞

|an+1|
|an|

then

R =
1

L
.

Comment

The lim sup always exists so it always works, but sometimes it is easier to work with the

second condition.

For the ratio test, we need a lim not a lim sup. Here is an example for why: If

an = 1/n for n > 0 even and an = 2/n for n > 0 odd then

lim sup
n→∞

|an|
|an+1|

= 2 and lim inf
n→∞

|an|
|an+1|

= 1/2.

But the radius of converges is 1.

Proof. The proof follows from the root test and the ratio test. We will prove the first

property, for example.

For every x we have lim supn→∞(|an||x|n)1/n = L|x|. So by the root test if L|x| < 1

then the series converges, and if |x|L > 1 then the series diverges (this means anx
n does

not tend to zero).

Examples

1. The radius of
∑∞

n=0(2/n)xn is 1 since lim supn→∞(2/n)1/n = 1.

2. The radius of
∑∞

n=0 x
n/n! is ∞ since limn→∞

n!
(n+1)!

= 0.

3. The radius of
∑∞

n=0 n
nxn is 0; for every x 6= 0 the sum diverges.

2What is lim sup? Given (an), for every n define bn = sup{ak : k ≥ n}. It is a new sequence (which is
non increasing). Define lim supn→∞ an = limn→∞ bn. The lim sup of a non-negative sequence is always
a real number.
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4. The radius of
∑∞

n=0(x− 1)n is 1.

Convergence at endpoints

Theorem 83. Let R be the radius of converges of
∑∞

n=0 anx
n. The series converges at

x = R iff the series uniformly converges on [0, R).

A similar statement holds for x = −R and (−R, 0].

Proof. If the series uniformly converges then for every ε > 0 there is N > 0 so that if

m > n > N then |
∑m

k=n anx
n| < ε for all x ∈ [0, R). Thus, for every m > n > N ,∣∣∣∣∣
m∑
k=n

anR
n

∣∣∣∣∣ = lim
x→R−

∣∣∣∣∣
m∑
k=n

anx
n

∣∣∣∣∣ ≤ ε.

This is Cauchy’s criterion.

On the other hand, assume that the series converges at R. Let x ∈ [0, R) and let

ε > 0. There is N > 0 so that if m > n > N then |
∑m

i=n aiR
i| < ε. We use the

summation by parts formula:

m∑
i=n

aix
i =

m∑
i=n

aiR
i(x/R)i

= Am(x/R)m −
m−1∑
i=n

AiR
i ·
(

(x/R)i+1 − (x/R)i
)

(summation formula)

where

Ak =
k∑
i=n

aiR
i.

So, ∣∣∣∣∣
m∑
i=n

aix
i

∣∣∣∣∣ ≤ ε · (x/R)m +
m−1∑
i=n

ε
(

(x/R)i − (x/R)i+1) = ε(x/R)n ≤ ε.

This implies uniform convergence.

Power series as functions

We now think of power series as functions in their domain of convergence.

Definition 84. A function f can be expressed as a power series in D ⊂ R if there is a

power series
∑

n anx
n that converges to f in D.
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Continuity

Theorem 85. The function f(x) =
∑∞

n=0 anx
n is continuous in the domain of conver-

gence of the series.

Proof. The convergence is uniform in (−R,R) so the function is continuous there, due

to previous theorem. In ±R, if the series converges then it uniformly converges, as we

stated, and so the same holds.

Integrability

Theorem 86. Assume that the radius of convergence of f(x) =
∑∞

n=0 anx
n is R. Then,

the radius of convergence of
∑∞

n=0 an
xn+1

n+1
is R as well. And, for all r ∈ [0, R) the

function f is integrable in [−r, r] and for all x ∈ [−r, r]∫ x

0

f(t)dt =
∞∑
n=0

an
xn+1

n+ 1
.

If the series converges at ±R then this holds there as well.

Proof. The first holds since

lim sup
n→∞

(an/n+ 1)1/n = lim sup
n→∞

an.

The second holds by the integration theorem.

Differentiability

Theorem 87. Assume that the radius of convergence of f(x) =
∑∞

n=0 anx
n is R. Then,

the radius of convergence of
∑∞

n=1 annx
n−1 is R as well. And the function f is differen-

tiable in (−R,R) and for all x ∈ (−R,R)

f ′(x) =
∞∑
n=1

annx
n−1.

If the series converges at ±R then this holds there as well.

The proof is similar to the above, so we do not prove.

Comments

1. We can apply the theorem as many times as we wish, and deduce that if f can

be expressed as a power series then it is differentiable infinitely many times in
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(−R,R) and the k-th derivative is

f (k)(x) =
∞∑
n=k

an
n!

(n− k)!
xn−k.

So the existence of infinitely many derivatives is a necessary but not sufficient

condition; the function f(x) = e1/x
2

for x 6= 0 and f(0) = 0 is differentiable

infinitely many times but does not have an expansion as a series (in an open set).

Indeed, it holds that f (n)(0) = 0 for all n > 0.

2. You can see from the expression why is differentiating more problematic: “it makes

the coefficients larger.”

For example,
∑∞

n=1 x
n/n2 converges at [−1, 1]. But its “derivative”

∑∞
n=1 x

n/n

converges at [−1, 1).

Taylor series

The following shows that a series expansion is the Taylor series.

Theorem 88. If f can be expressed as
∑∞

n=0 an(x − x0)
n with radius R > 0, then

an = f (n)(x0)/n! for all n.

Proof. We know that f differentiable infinitely many times in (−R,R). And that for all

k:

f (k)(x) =
∞∑
n=k

an
n!

(n− k)!
(x− x0)n−k.

Substitute x = x0 and get f (k)(x0) = akk!.

Recall Taylor’s polynomial approximation: if f is differentiable n + 1 times on an

open interval containing 0 and x then

f(x) = Tn(x) +Rn(x)

where

Tn(x) =
n∑
k=0

f (k)(0)

k!
xk , Rn(x) =

f (n+1)(c)

(n+ 1)!
xn+1,

and c ∈ [0, x]. The term Rn is called the residue.

We see that the series
∑∞

n=0 anx
n converges to a function f in (−R,R) iff f is infinitely

differentiable in (−R,R) and for every x ∈ (−R,R) we have limn→∞Rn(x) = 0.

For example, the function we saw above (e1/x
2

for x 6= 0 and 0 at x = 0) does not

have a Talyor series at 0, which means that the residue does not go to zero.
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Corollary 89. If f has infinitely many derivatives in (−R,R) and there is M > 0 so

that for all x ∈ (−R,R) we have |f (n)(x)| ≤ Mn for all n, then f has a power series

expansion in (−R,R).

Proof. For x ∈ [−r, r],

|Rn(x)| ≤Mn+1rn+1/(n+ 1)!→ 0

as n→∞.

Arithmetic

Theorem 90. If the radius of convergence of
∑∞

n=0 anx
n is at least R and

∑
n=0 bnx

n

is at least R the for every x ∈ (−R,R), then

∞∑
n=0

(can + dbn)xn = c
∞∑
n=0

anx
n + d

∞∑
n=0

bnx
n

and
∞∑
n=0

n∑
k=0

akbn−kx
n =

∞∑
n=0

anx
n ·

∞∑
n=0

bnx
n.

The proof is left as an exercise.

Applications

There are several applications of these ideas. They are useful for approximations and

also appear in differential equations (physics, economics, etc.).

Here is a simple example. Consider the differential equation f ′(x) = f(x). What is

a solution? c · ex. Let us see how to get there without guessing. Assume that f has a

series
∑∞

n=0 anx
n. Then write

f ′(x) =
∞∑
n=1

annx
n−1.

By equating coefficients we get

an−1 = ann,

or by induction

an = a0/n!.
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That is,

f(x) = a0e
x.
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Chapter 8

Multivariate functions

So far we talked about functions in one variable. We now move to talk about functions

in several variables. The main difference is the topology or geometry of the space where

the input is taken from; a line is different than the plane.

Graphs

A function f(x, y) is a map from the plane R2 to R. The graph of f is the collection

of points of the form (p, f(p)) ∈ R3. The graph of f is now a “surface” rather than a

“line.” We can try to draw it, but it is often not so easy (in more variables it is even

harder). E.g., f(x, y) = x2 + y2. The graph is a “symmetric bowl” with minimum at

zero.

There is a common way to draw a surface on a page: topographic map. In such a

map, for every r ∈ Z we draw a curve with all points of “height r”, that is, so that

f(x, y) = r. These curves are called contour lines. For x2 + y2, the contour lines are

circles; the point zero is the lowest point. For xy, the contour lines are of the form

y = r/x; the point zero is a “saddle.”

Real space

The d-dimensional real space Rd consists of points or vectors p ∈ Rd, which are d-tuples

of numbers p = (p1, . . . , pd).

We can add points and multiply them by a scalar, which makes Rd a d-dimensional

vector space.

67
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Inner product

This vector space is equipped with an inner product structure:

〈p, q〉 =
d∑
i=1

piqi.

Some of its properties:

• 〈p, q〉 = 〈q, p〉.

• 〈cp, q〉 = c 〈p, q〉 for c ∈ R.

• 〈p+ q, r〉 = 〈p, r〉+ 〈q, r〉.

Euclidean norm

Inner products define norms:

‖p‖ =
√
〈p, p〉.

It properties:

• ‖cp‖ = |c|‖p‖ for c ∈ R.

• ‖p‖ ≥ 0 and equality holds iff p = 0.

• ‖p+ q‖ ≤ ‖p‖+ ‖q‖.

The last property (convexity) is not obvious. We will soon prove it using the following.

Cauchy-Schwartz

Theorem 91. For all p, q ∈ Rn,

| 〈p, q〉 | ≤ ‖p‖ · ‖q‖.

Equality holds iff p = cq for c ∈ R.

This is a very useful inequality (it is hard to image how much). We will not prove it

in this course.
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Gower’s proof.

0 ≤
n∑

i,j=1

(piqj − pjqi)2

=
n∑

i,j=1

p2i q
2
j + p2jq

2
i − 2pipjqiqj

= 2
n∑
i=1

p2i ·
n∑
j=1

q2j − 2
n∑
i=1

piqj ·
n∑
j=1

pjqj

= 2
(
‖p‖2‖q‖2 − | 〈p, q〉 |2

)
.

Geometrically it can be thought of as〈
p

‖p‖
,
q

‖q‖

〉
≤ 1;

the inner product between two unit vectors is at most one—it is the cos of the angle

between them.

Let us prove the convexity of the norm:

‖p+ q‖2 = ‖p‖2 + 2 〈p, q〉+ ‖q‖2 ≤ ‖p‖2 + 2‖p‖‖q‖+ ‖q‖2 = (‖p‖+ ‖q‖)2.

Metric

Norms define metrics: the distance between p and q is ‖p− q‖. It is indeed a metric:

• ‖p− q‖ ≥ 0 and equality holds iff p = q.

• ‖p− q‖ = ‖q − p‖.

• ‖p− q‖ ≤ ‖p− r‖+ ‖r − q‖.

The last property (triangle inequality) is not obvious. It follows by convexity:

‖p− q‖ = ‖p− r + r − q‖ ≤ ‖p− r‖+ ‖r − q‖.

Topology

Continuity, differentiability, etc. were defined using the notion of distance on the real

line, and the notion of neighborhood. We use similar definition to study multivariate

functions.
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In high dimensions, there are several ways to define neighborhoods. Here are several

options (draw in two dimensions).

Definition 92. An open ball of radius r ≥ 0 centered at p ∈ Rn is

B(r, p) = {q ∈ Rd : ‖q − p‖ < r}.

A closed ball of radius r ≥ 0 centered at p ∈ Rn is

{q ∈ Rd : ‖q − p‖ ≤ r}.

An open cube of side length r ≥ 0 centered at p ∈ Rn is

C(r, p) = {q ∈ Rd : |pi − qi| < r ∀ i ∈ [n]}.

A closed cube of side length r ≥ 0 centered at p ∈ Rn is

{q ∈ Rd : |pi − qi| ≤ r ∀ i ∈ [n]}.

Comment

Note that for every p ∈ Rd and r > 0 we have

C(r/
√
d, p) ⊂ B(r, p) ⊂ C(r, p).

So, to there is so “substantial difference” between a small ball around p and a small

cube around p.

More generally

We now discuss it more generally and abstractly. Fix a set S ⊂ Rd. (Draw each definition

in the plane with several examples.)

Definition 93 (Interior). A point x ∈ S is called an interior point if there is r > 0 so

that B(r, x) ⊂ S. The interior of S denoted int(S) or So is the set of all interior points

in S. A set S is called open if int(S) = S.

Definition 94 (Boundary). A point x is a boundary point of S if for every r > 0 the ball

B(r, x) contains one point from S and one point not from S. Equivalently, x 6∈ int(S)

and x 6∈ int(Rd \ S). It is not necessarily part of S. The boundary of S denoted ∂S is

the set of boundary points of S.
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Definition 95 (Closure). A point x ∈ Rd is a limit point of S if for every r > 0 the ball

B(r, x) contains a point from S that is not x. The closure of S denoted S̄ or clo(S) is

the union of S and the set of all of its limit points.

Exercise 96. The closure of S is S̄ = S ∪ ∂S. A set S is closed if S = S̄.

Definition 97 (Bounded). The set S is bounded if there is r ∈ R so that S ⊂ B(r, 0).

Definition 98 (Connected). The set S is connected if for every x, y ∈ S there is a

continuous path contained in S connecting x and y. That is, there are d continuous

functions f1, . . . , fd on [0, 1] so that f(0) = (f1(0), . . . , fd(0)) = x and f(1) = y and for

all t ∈ [0, 1] we have f(t) ∈ S.

Comment

The image of f : [0, 1]→ Rd is a “continuous” path (we will define later on). It is called

a parametrized curve.

Definition 99. An open and connected set is called a domain.

Limits

Using these notions, we now define limits in Rd.

Definition 100. A sequence (pn) of points in Rd converges to a limit point p if for every

ε > 0 there is N > 0 so that if n > N then pn ∈ B(ε, p).

Theorem 101. The sequence (pn) converges to p iff for every i ∈ [d] the sequence (pn,i)

converges to pi.

Proof. We shall prove one direction; the other direction is left as an exercise. Assume

(pn) converges to p. Fix i ∈ [d] and let ε > 0. Let N > 0 be so that if n > N then

‖pn − p‖ < ε. Thus,

|pn,i − pi| ≤ ‖pn − p‖ ≤ ε

as well.

Comment

This implies that known properties of limits holds in Rd as well, like arithmetics, unique-

ness, etc.
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Compactness

We already know that a bounded sequence in R has a converging subsequence. This

also holds in Rd.

Theorem 102 (Bolzano-Weierstrass). If (pn) is a bounded sequence in Rd then it has a

converging subsequence.

Proof. We prove the theorem by induction on d; we apply the one-dimensional theorem

d times. For d = 1, we already know this. Assume we know the theorem for (d − 1)-

dimensional space and prove it in d dimensions. Let p′n be the projection of pn to the

first d − 1 coordinates. The sequence (p′n) has a converging subsequence (pnk
). Now

consider the sequence of numbers (pnk,d). It has a converging subsequence (pnk`
,d). The

sequence (pnk`
) converges.

This property is so important that it has a name:

Definition 103. A set S ⊂ Rd is compact if every sequence of points (pn) in S has a

converging subsequence and the limit is in S.

In real space, compact sets are easily described:

Exercise 104. A set S ⊂ Rd is compact iff S is closed and bounded.

Finite sub-covers

There are more definitions for compactness. Here we just prove one direction of the

equivalence.

Lemma 105 (Finite subcover property). Assume S ⊆ Rd is compact (closed and

bounded). Let {Ux}x∈S be a collection of open balls, one for each element of S, so

that

S ⊆
⋃
x∈S

Ux.

Then there is a finite set X ⊂ S so that

S ⊆
⋃
x∈X

Ux.

Proof. Assume that the conclusion does not hold. Since S is bounded, it is contains in

a cube C0 ⊂ Rd of finite side-length. The cube C0 can be partition to 2d cubes of half

the side-length. At least one of these 2d cubes does not have a finite sub-cover. We get

a cube C1 ⊂ C0. And we keep going to get

C0 ⊃ C1 ⊃ C2 ⊃ . . .
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For each n, choose pn ∈ Cn. The sequence (pn) has a converging sub-sequence to p ∈ S
(it actually converges but we do not need it). Thus, Up contains Cn for large enough n,

in contradiction to the choice of Cn (Cn does not have a finite sub-cover).

Limits of functions

Definition 106. Let D ⊂ Rd be a domain. The function f : D → R converges to L at

p ∈ D if for every ε > 0 there is δ > 0 so that if x ∈ B(δ, p) then |f(x)− L| < ε.

Comments

1. We can replace the ball B(δ, p) by the cube C(δ, p).

2. The known properties of limits of functions at a point also hold here (arithmetic,

sandwich, etc.).

3. Another equivalent definition is that for every sequence (pn) converging to p the

values f(pn) converge to L.

Note that here we can approach p along any path (not just from “two directions”).

We need to convergence to hold on all paths; there are infinitely many “directional

limits.”

For example, f(x, y) = xy
x2+y2

if (x, y) 6= (0, 0) and f(0, 0) = 0. How does the graph

look like? If we fix the value of x we get a function y. If x = 0 we get the all

zero function which is continuous. If x 6= 0, the function is continuous everywhere.

However, f does not have a limit at zero; on the line y = 0 the limit is 0, and on

the line y = x the limit is 1/2.

Continuity

Definition 107. Let S ⊂ Rd and f : S → R. Let p ∈ S be an interior point in S. f is

continuous at p if for every ε > 0 there is δ > 0 so that for every q ∈ S if ‖p − q‖ < δ

then ‖f(p)− f(q)‖ < ε. f is continuous in S if it is continuous in every point in S.

Comment

If S is not open, in the limit we approach x only from “within S.”

Properties

It has the same basic properties as over R; the proofs are identical.
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Theorem 108 (Arithmetic). If f, g : D → R are continuous functions then f + g and

fg are continuous in D as well. If g(x) 6= 0 for x ∈ D then f/g is continuous at x as

well.

Theorem 109 (Composition). If f : D → R and g : R→ R are continuous then g ◦ f
is continuous.

Theorem 110 (Behavior on compact sets—Weierstrass). Let S ⊆ Rd be compact (closed

and bounded). Let f : S → R be continuous. Then f attains its maximum and minimum

values in S.

Idea. Let (pn) be a sequence of points in S so that f(pn) converges to sup f(S) <∞, by

continuity. By compactness, it has a converging sub-sequence that converges to p ∈ S.

By continuity, f(p) = sup f(S).

Intermediate value

Theorem 111. Let D ⊆ Rd be connected. Let f : D → R be continuous in D. Let

p, q ∈ D be so that f(p) < a < f(q). Then there is x ∈ D so that f(x) = a.

Proof. Let γ : [0, 1] → D be a continuous path connecting p, q ∈ D. That is, γ(0) = p,

γ(1) = q and γ is continuous (in every coordinate). The function g(t) = f(γ(t)) is

continuous (similarly to the above). By the intermediate value theorem, there is t0 ∈
[0, 1] so that g(t0) = a. Set x = γ(t0).

Example

The function f(x, y) = x2−y2
x2+y2

on (x, y) 6= (0, 0) is continuous in the annulus

A(r/2, 2r) = {(x, y) : r/2 < ‖(x, y)‖ < 2r}

for every r > 0. We have

f(r, 0) = 1, f(0, r) = −1.

So in any neighborhood of zero, f takes all values in [−1, 1]. Specifically, it does not

have a limit at zero.

Uniformity

Definition 112. f : S → R is uniformly continuous if for every ε > 0 there is δ > 0 so

that for every p, q ∈ S if ‖p− q‖ < δ then |f(p)− f(q)| < ε.

Uniformity means that δ does not depend on x.
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Theorem 113. If S ⊆ Rd is compact and f : S → R is continuous in S then f is

uniformly continuous in S.

To prove, we use the finite sub-cover property.

Proof of theorem. Let ε > 0. By continuity, for every x ∈ S there is δx > 0 so that for

y ∈ S if ‖x− y‖ < δ then |f(x)− f(y)| < ε. By the finite sub-cover property, there is a

finite set X ⊂ S so that

S ⊂
⋃
x∈X

B(δx/2, x).

Choose

δ =
1

2
min{δx : x ∈ X} > 0;

this is a minimum over a finite set. If ‖p− q‖ < δ are both in S then there is x ∈ X so

that p ∈ B(δx/2, x) and so q ∈ B(δx, x) since ‖q − x‖ ≤ ‖q − p‖+ ‖p− x‖ ≤ δ. So

|f(p)− f(q)| ≤ |f(p)− f(x)|+ |f(q)− f(x)| ≤ 2ε.

Partial derivatives

We extend the notion of derivatives to two variables. There are several possibilities.

Here is the first one.

Definition 114. The partial derivative of a function f : R2 → R with respect to x at

(x0, y0) is
∂f

∂x
(x0, y0) = lim

x→x0

f(x, y0)− f(x0, y0)

x− x0
,

if the limit exists. A similar definition holds with respect to y.

Examples and comments

1. f(x, y) = xy for x, y > 1.

∂f

∂x
= yxy−1,

∂f

∂y
= xy · ln(x).

2. It gives information only about behavior in axis-parallel directions. It does not even

imply continuity. For example, f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0) and f(0, 0) = 0.
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It is not continuous at zero as we saw, but

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0.

The gradient

If both partial derivative of f at exist at p, we denote them as

∇f(p) =

(
∂f

∂x
(p),

∂f

∂y
(p)

)
.

This is called the gradient of f at p. We may think of ∇f as a function from R2 to

R2. The gradient thus defines a vector field: “on every points in R2 there is an arrow

pointing in some direction.” Draw for f(x) = x2 + y2; arrows pointing “outwards.”

Vector fields define “flows.”

Differentiability

Here we define a stronger notion of differentiability in high dimensions. The existence

of derivatives in R is equivalent to the existence of a tangent line (the number s is the

slope of the line).

Definition 115 (1D). A function f : R→ R is differentiable at p ∈ R if there is s ∈ R
so that

lim
q→p

f(q)− f(p)− s(q − p)
q − p

= 0.

We use this intuition to define differentiability in higher dimensions as well.

Definition 116 (2D). A function f : R2 → R is differentiable at p ∈ R2 if there is

s ∈ R2 so that

lim
q→p

f(q)− f(p)− 〈s, q − p〉
‖q − p‖

= 0.

Note that here p→ q is a two-dimensional limit.

Tangents

Differentiability means that f has a tangent plane at p; it can be approximated by a

linear function in the vicinity of p. The direction s defines the slope of the tangent; it is

“orthogonal” to the tangent plane. Here we discuss it in one way and later in another.
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The graph of the function

L(q) = f(p) + 〈s, q − p〉

is a hyperplane so that L(p) = f(p), and differentiability means that when q is close to

p we know that f(q) is very close to L(q). This is the tangent plane to f at p. This

hyperplane is orthogonal to (s1, s2,−1): for q, q′ ∈ R2 we have

〈(q1, q2, L(q))− (q′1, q
′
2, L(q′)), (s1, s2,−1)〉

= 〈s, q〉 − 〈s, q′〉 − f(p)− 〈s, q − p〉+ f(p) + 〈s, q′ − p〉 = 0.

Geometrically, this means that the angle between the tangent plane (embedded in R3)

and the vector (s1, s2,−1) is ninety degrees.

Differentiability implies continuity

With the notation from above:

lim
p→q

f(p)− f(q) = lim
p→q

(f(p)− f(q)− 〈s, q − p〉) + 〈s, q − p〉 = 0 + 0.

Differentiability yields that partial derivative exist

For example,

∂f

∂x
(p) = lim

δ→0

f(q)− f(p)

δ
(q = p+ (δ, 0))

= lim
δ→0

f(q)− f(p)− 〈s, q − p〉+ 〈s, q − p〉
‖p− q‖

= 0 + lim
δ→0

s1δ

δ
= s1,

Similarly,
∂f

∂y
(p) = s2.

Thus, s = ∇f(p) and the gradient is orthogonal to the tangent plane.

Partial derivatives yield differentiability?

The other direction does not hold; we saw a non-continuous function at zero, for which

the partial derivatives exist. But with a little more information, it does.
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Theorem 117. Let p ∈ R2 and r > 0. Assume f : B(r, p) → R has partial derivatives

in B(r, p) and that the partial derivatives are continuous at p. Then f is differentiable

at p.

It is not obvious that the theorem is true; it only assume things about behavior in

axis-parallel directions, but the conclusion is in all directions.

Proof. Denote by fx the partial derivative with respect to x, and similarly by fy the

partial derivative with respect to y. Let δ = (δ1, δ2) ∈ R2 and δ′ = (δ1, 0). Write

f(p+ δ)− f(p)− 〈∇f(p), δ〉
‖δ‖

=
f(p+ δ)− f(p+ δ′)− fy(p)δ2 + f(p+ δ′)− f(p)− fx(p)δ1

‖δ‖
.

The goal is to prove that this goes to zero as δ tends to zero.

Prove this in two parts: One

lim
δ→0

∣∣∣∣f(p+ δ′)− f(p)− fx(p)δ1
‖δ‖

∣∣∣∣ ≤ lim
δ→0

∣∣∣∣f(p+ δ′)− f(p)− fx(p)δ1
δ1

∣∣∣∣
= lim

δ→0

∣∣∣∣f(p+ δ′)− f(p)

δ1
− fx(p)

∣∣∣∣ = 0.

And two

lim
δ→0

∣∣∣∣f(p+ δ)− f(p+ δ′)− fy(p)δ2
‖δ‖

∣∣∣∣ ≤ lim
δ→0

∣∣∣∣f(p+ δ)− f(p+ δ′)

δ2
− fy(p)

∣∣∣∣ .
Here we need to use continuity: There is a point q on the line between p+ δ and p+ δ′

so that
f(p+ δ)− f(p+ δ′)

δ2
= fy(q);

Lagrange’s theorem. So,

lim
δ→0

∣∣∣∣f(p+ δ)− f(p+ δ′)− fy(p)δ2
‖δ‖

∣∣∣∣ ≤ lim
δ→0
|fy(q)− fy(p)| = 0,

since fy is continuous.

Directional derivatives

So far, we took derivatives in the direction of the axes; we can approach a point from

any direction.
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Definition 118. Let v ∈ Rd. For f : Rd → R and p ∈ Rd, define

∂f

∂v
(p) = lim

δ→0

f(p+ δv)− f(p)

δ
.

Theorem 119. If f : R2 → R is differentiable at p ∈ R2 then for all v ∈ R2 we have

∂f

∂v
(p) = 〈v,∇f(p)〉 .

Proof.

lim
δ→0

f(p+ δv)− f(p)

δ
− 〈v,∇f(p)〉 = lim

δ→0

f(p+ δv)− f(p)− 〈p+ δv − p,∇f(p)〉
δ

= 0.

Example

Let f(x, y) = (x2y)1/3. On the axes, f is the zero function and hence its partial deriva-

tives are zero. However, for v = (1, 1) we have 〈∇f(0), v〉 = 0 but

∂f

∂v
(0) = lim

δ→0

f(δ, δ)

δ
= 1 6= 0.

The formula above does not work, this means that f is not differentiable at zero.

Growth

By Cauchy-Schwatz, ∣∣∣∣∂f∂v (p)

∣∣∣∣ ≤ ‖v‖ · ‖∇f(p)‖,

and equality holds iff v is in the direction of ±∇f . This can be interpreted as follows.

If we are standing in (p, f(p)) on the graph of f (which we can imagine as a mountain),

the steepest uphill climb is in the direction ±∇f(p).

This idea is very useful: when trying to minimize a function (which is a very useful

task) we can try to locally move opposite to the direction of the gradient until “reaching

the bottom of the sea.” This method is called gradient descent. (This may sometimes

not work.)

Chain rule

Theorem 120. Let S ⊂ R2 be an open set, and let f : S → R be differentiable. Let

x : [0, 1] → R and y : [0, 1] → R be differentiable functions so that (x(t), y(t)) ∈ S for
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all t ∈ [0, 1]. Let g(t) = f(x(t), y(t)) for t ∈ [0, 1]. Then, g : (0, 1)→ R is differentiable

and
dg

dt
(t0) =

∂f

∂x
(x(t0), y(t0))

dx

dt
(t0) +

∂f

∂y
(x(t0), y(t0))

dy

dt
(t0)

for t0 ∈ (0, 1).

This is abbreviated as
dg

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Proof. Let p = (x(t0), y(t0)). Let δ > 0 and q = (x(t0 + δ), y(t0 + δ)). We know that

lim
δ→0

q − p
δ

= (x′(t0), y
′(t0)).

In addition, q → p when δ → 0. Thus,

lim
δ→0

g(t0 + δ)− g(t0)

δ
= lim

δ→0

f(q)− f(p)− 〈∇f(p), q − p〉+ 〈∇f(p), q − p〉
δ

= 0 +
∂f

∂x
(p)x′(t0) +

∂f

∂y
(p)y′(t0).

Corollary 121. If S ⊂ R2 is open and connected and f : S → R is differentiable so

that ∂f/∂x and ∂f/∂y are zero in S then f is constant in S.

Idea. For every p, q ∈ S, there is a differentiable path (x(t), y(t)) connecting them (try

to prove). By the above, d
dt
f(x(t), y(t)) = 0 which means that f(p) = f(q).

Contour lines

This also shows that the gradient is orthogonal to the contour lines. We will just give

an intuitive explanation. Consider the contour set K = {(x, y) : f(x, y) = c}. Assume

that in a small part of K we have y = y(x); this does not always hold — follows from

the implicit function theorem (some extra assumptions). Assume that g is differentiable

(again can be proved under some assumptions). All of these assumptions just mean that

the contour line is “nice.” Thus, g(x) = f(x, y(x)) is constant. The chain rule gives

0 =
dg

dx
=
∂f

∂x
+
∂f

∂y

dy

dx
= 〈∇f(x, y(x)), (1, y′(x))〉 .

Geometrically, this means that the gradient is perpendicular to the tangent line whose

direction is (1, y′).
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Higher order partial derivatives

Given f : S → R for S ⊂ R2 the two partial derivatives fx, fy are two new functions

that we can try to differentiate. For example, we can consider

∂

∂y

∂

∂x
f =

∂2f

∂y∂x
= (fx)y = fxy,

if the relevant limit exists. There are infinitely many more options.

Example

Consider

f(x, y) =

{
xy x

2−y2
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Thus, for (x, y) 6= 0

fx(x, y) = y
(3x2 − y2)(x2 + y2)− x(x2 − y2)2x

(x2 + y2)2

and for y 6= 0

fx(0, y) = −y.

And by (anti) symmetry, for x 6= 0

fy(x, 0) = x.

So

(fx)y(0, 0) = −1, (fy)x(0, 0) = 1.

That is, sometimes the two partial derivative are not the same, but in many cases they

are, as the following theorem shows (we shall prove later on).

Theorem 122. Let S ⊂ R2 be an open set and f : S → R. Assume that fxy, fyx exists

and are continuous in S. Then, fxy = fyx in S.

Summary

In this part, we started studying higher dimensional space. There are some subtleties

with the definition (finding the “correct” definition), but after this choice most proofs

are similar to their one-dimensional analog. We talked about graphs, limits, continuity

and differentiability.
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Chapter 9

Iterated integrals

Parametric integrals on rectangles

As partial derivatives are one-dimensional in nature, we can do a similar operation for

integrals. The set [a, b] × [c, d] ⊂ R2 is a rectangle. Let f : [a, b] × [c, d] → R be

continuous. For every fixed x ∈ [a, b], the function f(x, y) is continuous in y and hence

integrable, and we can define

F (x) =

∫ d

c

f(x, y)dy.

The function F (x) is the area between f and the fiber above x, {(x, y) : y ∈ [c, d]}.
Example: f(x, y) = xy in [0, 1]2.

Theorem 123. With the notation above, if f is continuous then F : [a, b] → R is

continuous.

Proof. Since the domain is compact and f continuous, it is uniformly continuous. Let

ε > 0. Let δ > 0 be so that if ‖p− p′‖ < δ then |f(p)− f(p′)| < ε. Now, if |x− x′| < δ

then

|F (x)− F (x′)| ≤
∫ d

c

|f(x, y)− f(x, y′)|dy < ε(d− c).

83
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The derivative

Theorem 124 (Leibnitz). With the notation above, assume that fx exists and is con-

tinuous in R. Then, F is differentiable and

F ′(t) =

∫ d

c

fx(t, y)dy

for t ∈ (a, b).

Proof. Let δ > 0. We are interested in

F (t+ δ)− F (t)

δ
=

∫ d

c

f(t+ δ, y)− f(t, y)

δ
dy.

By Lagrange’s theorem, for every t, δ, y there is s between 0 and δ so that

fx(s, y) =
f(t+ δ, y)− f(t, y)

δ
.

Thus,

lim
δ→0

∫ d

c

f(t+ δ, y)− f(t, y)

δ
dy = lim

δ→0

∫ d

c

fx(s, y)dy =

∫ d

c

fx(t, y)dy,

using the proof of the previous theorem since fx is continuous (we can not use the

theorem as a “black box” since s may depend on y).

Example

d

dx

∫ 2

1

sin(xey)dy =

∫ 2

1

∂

∂x
sin(xey)dy =

∫ 2

1

ey cos(xey)dy.

Non-rectangles

Theorem 125. Let f : [a, b]×[c, d]→ R be continuous so that fx exists and is continuous

as well. Let A,B : [a, b]→ [c, d] be two differentiable functions. Let

F (t) =

∫ B(t)

A(t)

f(t, y)dy.
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Then, F is differentiable in [a, b] and

F ′(t) = f(t, B(t))B′(t)− f(t, A(t))A′(t) +

∫ B(t)

A(t)

fx(t, y)dy.

The functions A,B define a sub-area of the rectangle. In general, it is not a rectangle,

but is also not an arbitrary set.

To prove the theorem, we use the following lemma, which is in 3-dimensional space.

Lemma 126. Let f : [a, b]× [c, d]→ R be continuous so that fx exists and is continuous

as well. Define G : [c, d]× [c, d]× [a, b]→ R by

G(u, v, t) =

∫ v

u

f(t, y)dy.

Then, the three partial derivatives of G exist and are continuous.

Proof of theorem. From previous arguments (we argued in two dimensions, but the same

argument works in three), we can conclude from the lemma that g(x) = G(A(x), B(x), x)

is differentiable and by the chain rule

g′(t) = Gx(A(t), B(t), t)A′(t) +Gy(A(t), B(t), t)B′(t) +Gz(A(t), B(t), t).

Proof of lemma. By the previous theorems, for fixed u, v the partial derivative Gz exists,

equals

Gz(u, v, t) =

∫ v

u

fx(t, y)dy

and is continuous. For fixed v, t, by the fundamental theorem of calculus the func-

tion G(u, v, t) is differentiable with respect to u and its derivative is f(t, u), which is

continuous. The third partial derivative is similar.

Iterated integrals

After integrating in one direction, we can integrate in the second. If the function f(x, y)

is integrable for every x, then we get

F (x) =

∫ d

c

f(x, y)dy.



86 CHAPTER 9. ITERATED INTEGRALS

If F is integrable in [a, b] then we get∫ b

a

∫ d

c

f(x, y)dydx.

This is called iterated integral (“nishne”). We can also have (if all is defined)∫ d

c

∫ b

a

f(x, y)dxdy.

These two numbers may not be equal in general. Try to find an example. But when f

is continuous they are.

Theorem 127 (Fubini). If f as above is continuous then∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy.

Proof. Since f is continuous, both integrals are defined. In fact, the following two

functions are defined:

g(t) =

∫ t

a

∫ d

c

f(x, y)dydx, h(t) =

∫ d

c

∫ t

a

f(x, y)dydx.

We will show that h = g on [a, b], by showing that h′ = g′ since h(a) = g(a) = 0. Well,

since f is continuous by known theorems:

g′(t) =

∫ d

c

f(t, y)dy

and

h′(t) =

∫ d

c

(
∂

∂t

∫ t

a

f(x, y)dy

)
dx =

∫ d

c

f(t, y)dx.

Applications

Computing integrals: example

For 0 < a < b, what is ∫ 1

0

xb − xa

lnx
dx?
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Solution: ∫ 1

0

xb − xa

lnx
dx =

∫ 1

0

∫ b

a

xydydx

=

∫ b

a

∫ 1

0

xydxdy

=

∫ b

a

xy+1

y + 1

∣∣∣∣1
0

dy

=

∫ b

a

1

y + 1
dy = ln(b+ 1)− ln(a+ 1).

Second order partial derivatives

We now sketch the proof of a theorem that we stated in the previous chapter.

Theorem 128. Let S ⊂ R2 be an open set and f : S → R. Assume that fxy, fyx exists

and are continuous in S. Then, fxy = fyx in S.

Sketch. By what we saw, for every [a, b]× [c, d] ⊂ S we have∫ b

a

∫ d

c

fxy(s, t)dtds =

∫ b

a

∫ d

c

fyx(s, t)dtdx = f(a, c) + f(b, d)− f(a, d)− f(b, c).

For example,
∫ b
a
fxy(s, t)ds = fy(b, t)− fx(a, t).

Now, if fxy > fyx+ δ at some point, then by continuity fxy > fyx+ δ/2 holds in some

rectangle which implies that in this rectangle the equality that we proved above does

not hold.
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Chapter 10

Volumes

We now extend our discussion on areas. We would like to measure the area of general

shapes, not just shapes defined by functions, and also volumes in higher dimensions.

As before, we try to approximate a general shape using “simple” shapes, and when this

approximation works well then we can say what the volume is.

In the plane, our simple shapes in this case are rectangles or boxes. E.g. sets of the

form [a, b]× [c, d]× [e, f ] ⊂ R3, whose volume is (b− a)(c− d)(f − e).

Integrability on rectangles

Let f : R → R with a rectangle R = [a, b] × [c, d]. We can partition [a, b] and [c, d] to

{x0 < . . . < xn} and {y0 < . . . , yk}. This yield a partition P = {Rij} of R to rectangles

of the form

Rij = [xi−1, xi]× [yj−1, yj]

for i ∈ [n] and j ∈ [k]. For each i, j, we can choose an evaluation point tij ∈ Rij. The

Riemann sum of f with respect to P and t = (tij) is

S(f, P, t) =
n∑
i=1

k∑
j=1

f(tij)a(Rij),

where a(Rij) is the area of Rij. The diameter of the partition P is

λ(P ) = max{xi − xi−1 : i ∈ [n]} ∪ {yj − yj−1 : j ∈ [k]}.

Comment

If we try to define λ(P ) as the maximum area of Rij over i, j, this will fail, since there

are rectangles of side length 1 and area as small as we want (such rectangles do not

89
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“sample” f correctly).

Definition 129. A function f : R→ R is Riemann integrable if there is I ∈ R so that

for all ε > 0 there is δ > 0 so that for every partition P of R with λ(P ) < δ and for

every choice of evaluation points t for P we have

|S(f, P, t)− I| < ε.

If f is integrable we denote ∫
R

f(x)dx = I.

This definition is completely analogous to the one-dimensional case.

Theorem 130. If f is integrable in a rectangle then it is bounded.

To understand integrability better, we again use Darboux sums. Given f and a

partition P = {Rij} of the rectangle R, we define

Mij = sup f(Rij) and mij = inf f(Rij).

Definition 131. The upper Darboux sum is

U(f, P ) =
n∑
i=1

k∑
j=1

Mija(Rij).

The lower Darboux sum is

L(f, P ) =
n∑
i=1

k∑
j=1

mija(Rij).

A similar characterization to the one-dimensional case holds in this case as well.

Theorem 132. Let f : R → R be bounded with R a rectangle. Then, f is Riemann

integrable iff for every ε > 0 there is a partition P so that U(f, P )− L(f, P ) < ε.

Example

The integral
∫
R
f(z)dz represents the area between the graph of f , which is a 3-dimensional

object, and the xy-plane (where area above plane is positive and area below is negative).

For example, f(x, y) = x+ y on [0, 1]2. Draw the graph of the function. The integral is

the area between two planes, cut by a square.
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Shapes with area

We first see how to measure the area of general sets in the plane (not just of areas defined

by functions). Not all sets have area, but some do.

Definition 133. A bounded set S ⊂ R2 has area if its characteristic function 1S is

integrable in some large rectangle containing S. If S has area, we denote it also by a(S)

or
∫
x∈S dx.

We provide a different characterization of this. The following extends the one-

dimensional case.

Definition 134. A set T ⊂ R2 has measure zero if for every ε > 0 there is a countable

collection of rectangles {Ri} so that

T ⊂
⋃
i

Ri

and ∑
i

a(Ri) < ε.

Recall that the boundary ∂S of S is the set of points x so that for every r > 0 the

ball B(r, x) contains a point from S and a point not from S.

Theorem 135. Let S ⊂ R2 be bounded. S has an area iff ∂S has measure zero.

Sketch. First, observe that if x ∈ ∂S then x is a discontinuity point of 1S.

Now, as in the one-dimensional case, a function is integrable iff the set of its discon-

tinuity points has measure zero.

Why? (i) We saw that we can use smaller and smaller covers of the discontinuity

points show that the Riemann sums converge. (ii) In the other direction, every disconti-

nuity point there is a significant difference between Mij and mij, so if they do not have

measure zero, the upper and lower Darboux sums are not the same.

Integrals on sets

Definition 136. Let S ⊂ R2 be bounded. A function f : S → R is integrable on S if

for every large enough rectangle R containing S the function on R that extends f and is

zero on R \ S is integrable.

There are two issues with such integrability: the behavior of f and the structure of

S. We mainly consider sets with area, which removes the former issue.
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Theorem 137. Let S ⊂ R2 be a bounded set with area, and let f, g : S → R be bounded

functions.

1. If f is continuous then it is integrable.

2. f is integrable iff the set of its continuity points has measure zero.

3. If f, g are integrable and f(x) ≤ g(x) for all x ∈ S the
∫
S
f(x)dx ≤

∫
S
g(x)dx.

4. If T is a set with area so that S ∩ T = ∅ and f is extended to T so that f is

integrable on T then f is integrable on S ∪ T and∫
S∪T

f(x)dx =

∫
S

f(x)dx+

∫
T

f(x)dx.

5. If f, g are integrable then αf + βg and f · g are integrable, with α, β ∈ R. In

addition, ∫
(αf + βg)(z)dz = α

∫
f(z)dz + β

∫
g(z)dz.

6. If f, g are continuous and non-negative then there is x0 ∈ S so that

f(x0)

∫
S

g(x)dx =

∫
S

f(x)g(x)dx.

Computation

We now use iterated integrals to compute higher-dimensional integrals.

Theorem 138. Let f : R → R be integrable with R = [a, b] × [c, d]. Assume that for

all x ∈ [a, b] the integral I(x) =
∫ d
c
f(x, y)dy exists. Assume that I is integrable in [a, b].

Then ∫
R

f(z)dz =

∫ b

a

I(x)dx =

∫ b

a

∫ d

c

f(x, y)dydx.

Proof. We will show that for all ε > 0,∣∣∣∣∫
R

f(z)dz −
∫ b

a

I(x)dx

∣∣∣∣ < 2ε.

Let P = {x0 < . . . < xn} be a partition of [a, b] and Q = {y0 < . . . < ym} be a partition

of [c, d]. Denote by Rij the rectangles defined by P and Q, and by Mij and mij the

supremum and infimum of f in Rij. Also, let δxi = xi − xi−1 and δyj = yj − yj−1. For

each i ∈ [n], choose ξi ∈ [xi−1, xi].
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We bound∣∣∣∣∫
R

f(z)dz −
∫ b

a

I(x)dx

∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

I(x)dx−
∑
i

I(ξi)δxi

∣∣∣∣∣+

∣∣∣∣∣
∫
R

f(z)dz −
∑
i

I(ξi)δxi

∣∣∣∣∣ .
The left summand is at most ε, as long as the parameter of P is at most some δ,

since I is integrable.

It remains to bound the right summand. By choice,∑
j

mijδyj ≤ I(ξi) ≤
∑
j

Mijδyj.

Multiply by δxi and sum over i:

L(f, {Rij}) =
∑
i,j

∑
j

mija(Rij) ≤
∑
i

I(ξi)δxi ≤
∑
i,j

Mija(Rij) = U(f, {Rij}).

In addition,

L(f, {Rij}) ≤
∫
R

f(z)dz ≤ U(f, {Rij}).

The proof is complete, since when the parameter of {Rij} is small, the upper and lower

Darboux sums are at most ε apart.

Comments

1. A similar statement holds when we replace x and y.

2. The theorem also holds for general sets S with area instead of rectangles (by

definition). But it is not always useful, since the computation may not be tractable.

When S is defined by two graphs of functions (we call such sets S normal with

respect to the x-axis), this becomes simpler∫
S

f(z)dz =

∫ b

a

∫ h(x)

g(x)

f(x, y)dydx.

We leave the proof as an exercise.

Some examples of normal shapes: squares, circles, ellipses, etc. Draw an example

of a non-normal shape.
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Examples

1. Let S be a triangle with vertices (0, 0), (0, 1), (1, 0) with f(x, y) = xy + x2:∫
S

f(z)dz =

∫ 1

0

∫ 1−x

0

f(x, y)dydx =

∫ 1

0

(x− x3)/2 dx.

2. When S is normal in several directions, choosing the right one may be very impor-

tant. For example, let S be the unit circle, and consider f(x, y) =
√

1− y2. The

expression ∫ 1

−1

∫ √1−x2
−
√
1−x2

√
1− y2dydx

is difficult to compute, but

∫ 1

−1

∫ √1−y2

−
√

1−y2

√
1− y2dxdy =

∫ 1

−1
2(1− y2)dy.

3. A similar example: let S be the triangle with vertices (0, 0), (1, 1), (0, 1) and

f(x, y) = ex/y. One integral is easy and the other is not (there is no elementary

indefinite integral
∫
ex/ydy).

Multivariate substitution

Comment: in this course, we will introduce the main ideas, and formulas. You will prove

many of the statements in the next course.

In one dimension

First, let us recall what happens in the one-dimensional case. Let f : [α, β] → R and

φ : [a, b] → [α, β] is one-to-one and φ(a) = α, φ(b) = β then the substitution x = φ(t)

gives (dx/dt = φ′(t)) ∫ β

α

f(x)dx =

∫ b

a

f(φ(t))φ′(t)dt.

Here is a geometric interpretation; for simplicity, we consider a simple example. Let

[a, b] = [1, 10] and φ(t) = t2. Thus [α, β] = [1, 100]. One one side, let ti = i for

i = 1, . . . , 10, in the “limit”: ∫ 10

1

g(t)dt ≈
10∑
i=1

g(ti)δti.
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Now, consider xi = φ(ti) = i2. The points xi are no longer equidistributed in [1, 100].

We have ∑
i

1δxi =
∑
i

1(i2 − (i− 1)2) =
∑
i

2i− 1 ≈
∑
i

1 · 2i.

Roughly,

δti · 2i ≈ δxi.

The integral
∫ β
α

1dx is obtained by finer and finer partitions of [α, β], and
∫ b
a

2tdt by finer

and finer partitions of [a, b]. In the “limit” we get that the two integrals are equal. The

term 2t = |φ′(t)| measure the amount in which φ changes lengths in the vicinity of t.

In two dimensions

In analogy to the one-dimensional case, we search for a formula of the form∫
D

f(x, y)dxdy =

∫
φ(D)

f(φ(s, t))J(s, t)dsdt,

where J measures the amount in which φ changes areas in the vicinity of (s, t). What

is J?

Example: Let S = {(r, θ) : 0 ≤ r ≤ 10, 0 ≤ θ < 2π} and let

(x, y) = φ(r, θ) = (r cos θ, r sin θ).

These are called poler coordinates, and we will study them more formally later on.

Consider a grid in the rθ system. How does it look like in the xy system? Circles and

rays from origin; draw. All squares in the rθ system have the same area. The areas

of the regions in the xy system change with r. We will now see how to measure this

change.

The Jacobian

The Jacobian J = Jφ measures the change in area φ creates. Let us see how to find it.

Let (x, y) = φ(s, t). Consider a small rectangle containing (s, t):

T = [s, s+ δ1]× [t, t+ δ2].

Its area is δ1δ2. The shape φ(T ) is close to a parallelogram, since φ is differentiable so in

a small set it is well-approximated by a linear function. What are the vectors defining

it?

φ(s+ δ1, t)− φ(s, t)
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and

φ(s, t+ δ2)− φ(s, t).

What is its area? Since δ1, δ2 are small, we can approximate these vector by assuming

that φ is a linear function:

φ(s, t) = (as+ bt, cs+ dt).

Then

φ(s+ δ1, t)− φ(s, t) = (aδ1, cδ1)

and

φ(s, t+ δ2)− φ(s, t) = (bδ2, dδ2).

Now use the following claim that you already saw:

Claim 139. Let v, u ∈ R2 be two vectors. The volume of the parallelogram they define

is the absolute value of the determinant of the 2× 2 matrix whose rows are u, v.

Thus, when φ is linear, the volume of φ(T ) is∣∣∣∣det

[
aδ1 cδ1
bδ2 dδ2

]∣∣∣∣ = δ1δ2

∣∣∣∣det

[
a c

b d

]∣∣∣∣ .
The area changes by ∣∣∣∣det

[
a c

b d

]∣∣∣∣ .
When φ is not linear, we replace

[
a c

b d

]
by the matrix

[
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

]
.

Definition 140. Let D,S be two domains (open and connected) sets in R2. Let φ :

D → S. Let x : D → R and y : D → R be so that

φ(s, t) = (x(s, t), y(s, t)).

Assume that the partial derivative of x and y exist. Define the Jacobian matrix

JM =

[
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

]
=

[
xs xt
ys yt

]
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and the Jacobian determinant:

J = Jφ = det JM = xsyt − xtys;

thus J : D → R.

Theorem 141. Let D,S ⊂ R2 be two compact sets. If φ : D → S is one-to-one

and onto, and φ(s, t) = (x(s, t), y(s, t)) with x, y differentiable, then for f : S → R
continuous, ∫

S

f(x, y)dxdy =

∫
D

f(s, t)|Jφ(s, t)|dsdt.

Usually we want to compute the l.h.s. above, so to apply this theorem, we need to do

four things: find a good φ, understand what is D = φ−1(S), compute Jφ, and integrate

over D.

Since this theorem deals with integrals, if φ is not invertible in a set of measure zero,

we can still apply the theorem.

Example: polar coordinates

Consider a quarter of a unit circle S that starts in an angle −α (draw) and ends at

π/2− α, and f : S → R defined as

f(x, y) = tan−1(y/x).

What is ∫
S

f(z)dz?

The shape and the function are both simpler if we use a different coordinate system: let

φ(r, θ) = (x, y) defined by

x = r cos θ, y = r sin θ.

Note that φ is invertible and hence one-to-one on [0,∞) × [0, 2π). It maps this set to

R2. What is

S = φ−1(D)?

It is a box:

[0, 1]× [−α, π/2− α] = {(r, θ) : 0 ≤ r ≤ 1,−π/2 ≤ θ ≤ π/2}.

What is J?

xr = cos θ, yr = sin θ
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and

xθ = −r sin θ, yθ = r cos θ

so

J(r, θ) = r(cos2 θ + sin2 θ) = r.

Geometrically, the area of a box of side length δ of distance r from origin in the

rθ-system becomes of area ≈ rδ2 in the xy system. We now formally see the example we

talked about earlier.

Finally, integrate:

f(x, y) = tan−1(tan(θ)) = θ

implies ∫
S

f(x, y)dxdy =

∫ 1

0

∫ π/2−α

−α
θrdθdr =

(π/2− α)2 − α2

4
.

Polar coordinates are especially useful for functions f(z) that depend on ‖z‖. The

contour lines of such functions are circles.

The area of a circle

Let S = {z ∈ R2 : ‖z‖ ≤ R}. Let D = [0, R]× [0, 2π] and φ(r, θ) = (x, y) as above:∫
S

1dz =

∫
D

rdrdθ = 2π · R
2

2
= πR2.

Center of mass

As an application of these ideas, we briefly discuss a physical application. We consider

a simple example; this terminology underlies many ideas in modern physics.

Let us first consider a one dimensional example. Let I ⊂ R be a closed interval.

Think of it as a stick in three-dimensions, with uniformly distributed mass. The mass

of the stick is

m =

∫
I

dx = (b− a),

up to some normalization (so say in KG). We can ask: what is the center of mass of the

stick? where should we position a pin so that it is balanced? The simple answer is: in

the middle. Formally, it is

x0 ·m =

∫
I

xdx =

∫ b

a

xdx = m · a+ b

2
.
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Physically, we can sometime think of the stick as a particle of mass m positioned in the

middle of the stick. More generally, if m(x) is the mass density around x, we get

m =

∫
I

m(x)dx

and

x0 ·m =

∫
I

m(x)xdx.

The intermediate value theorem implies that x0 ∈ I, which is quite natural in this case.

Now, in two-dimensions. Let D ⊂ R2 compact and connected. Think of it as a rigid,

very thin three-dimensional body. The mass of the body is (say in KG) is

m =

∫
D

m(x, y)dxdy.

The center of mass is a now a point (x0, y0) defined as:

x0 ·m =

∫
D

xm(x, y)dxdy

and

y0 ·m =

∫
D

ym(x, y)dxdy.

You can check that the center of mass of a ball B = B(r, 0) is its center with uniformly

distributed mass is m(x, y) = 1. This is an example of a case when polar coordinates is

useful: ∫
B

x
1

π
dxdy = 0.

Similarly, the center of mass of an annulus of inner radius 1/2 and outer radius 1 is the

origin as well – it is outside the body. Here the intermediate value theorem does not

imply that (x0, y0) ∈ D. But if S is convex then its center of mass is in S.

Invertability

Claim 142. If φ is linear, then Jφ 6= 0 is equivalent to φ being invertible.

In general, Jφ 6= 0 does not implies invertibility.

Explanation. Assume φ(z) = Az for a 2 × 2 matrix A. If φ(z) = φ(z′) the means that

A(z − z′) = 0. Since JMφ = A in this case, the condition detA 6= 0 implies that A is

invertible and that z = z′.
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Non-explicit Jacobians

Sometimes it is difficult to compute Jφ. The following property can be useful. If φ−1 is

also differentiable and Jφ 6= 0, then

Jφ(s, t) =
1

Jφ−1(x(s, t), y(s, t))
.

A more general property holds:

Theorem 143. Let D,E ⊂ R2 be two open sets. Let φ : D → E and ψ : E → R2 be

two differentiable functions. Define σ = ψ ◦ φ. Then,

Jσ(s, t) = Jψ(φ(s, t))Jφ(s, t).

When ψ = φ−1, we get the statement above (note that we did not prove that φ−1 is

non zero).

Proof. Write σ(s, t) = ψ(x, y) with (x, y) = φ(s, t). By the chain rule,

σs = ψxxs + ψyys = 〈(ψx, ψy), (xs, ys)〉 .

There are three more similar equalities, which can be summarized:

JMσ = JMψJMφ.

The theorem follows since the determinant is multiplicative.

Example

What is the area a(S) of

S = {(x, y) ∈ R2 : 1 ≤ xy ≤ 3, 3 ≤ y2 − x2 ≤ 4}?

The graph of xy = c is an hyperbola. The graph of x2 − y2 = c is also an hyperbola.

So, S is defined by four hyperbolas. It has two connected components, of equal area.

The choice of φ : D → S is defined by

s(x, y) = xy, t(x, y) = y2 − x2.

This is an implicit definition; we actually defined ψ : S → D. Why is it invertible? It is

not. It is invertible only in the x ≥ 0, y ≥ 0 part. This part contains half the area of S.

But on this part it is invertible: Given (s, t) ∈ D, the set of (x, y) so that xy = s is an
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hyperbola, and for different s’s we get disjoint hyperbolas. For fixed s, the hyperbola

xy = s intersects the hyperbola y2 − x2 = t in a single point.

What is D? It is simply

[1, 3]× [3, 4].

It is not so easy to explicitly write x = x(s, t) and y = y(s, t). The comment from above

shows that we do not have to:

sx = y, sy = x, tx = −2x, ty = 2y

so

Jφ−1(x, y) = 2y2 + 2x2.

Now, we want to express it a function of s, t:

t2 + 4s2 = x4 + 2x2y2 + y4 = (x2 + y2)2

so

Jφ(s, t) =
1

2
√
t2 + 4s2

.

We can conclude that

a(S) = 2 ·
∫ 3

1

∫ 4

3

1

2
√
t2 + 4s2

dtds.

This can be computed, but we skip it here (the 2 comes from that there are two sets of

equal size).

Generalized integrals

So far we defined integrals of bounded functions on bounded sets with area. We now

consider more general cases.

First, recall the definition in R. We defined integrals over [a, b] and then the integral

over R is obtained by a → −∞ and b → ∞. That is, f : R → R is integrable in R if

there is I ∈ R so that for all ε > 0 there is r > 0 so that if [a, b] ⊃ [−r, r] then∣∣∣∣∫ b

a

f(x)dx− I
∣∣∣∣ < ε.

In R2 there are “several ways to approach infinity”.

Definition 144 (Conditional Riemann integrability on R2). Let f : R2 → R. Assume

that for every bounded set S ⊂ R2 with area the function f is integrable on S. We say

that f is integrable on R2 if there is I ∈ R so that for every ε > 0 there is r > 0 so that
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for every bounded set S with area with [−r, r]2 ⊂ S,∣∣∣∣∫
S

f(z)dz − I
∣∣∣∣ < ε.

To define integrals of unbounded functions on an open interval, we approach the

interval from the inside by closed intervals. In the plane, its is less obvious how to define

it, so we first consider non negative functions, for which convergence issues are easier to

handle. (There are open sets whose boundary does not have measure zero.)

Definition 145 (Non negative). The D ⊂ R2 be an open set, and f : D → R be non

negative (not necessarily bounded). Assume that f is integrable in every bounded E ⊂ D

with area on which f is bounded. The integral of f on D is

I = sup

{∫
E

f(z)dz : E ⊂ D bounded with area and f is bounded on

}
.

We say that f is integrable if its integral is finite.

Exercise 146. For non negative f , it suffices to check that

lim
n→∞

∫
En

f(z)dz = I,

for an increasing sequence of bounded sets with area En so that
⋃
nEn = D.

When f is arbitrary, the condition given in the exercise above does not suffice. We

can have f : R2 → R so that for En = [−n, n]2 we have
∫
En
f(z)dz = 0 for all n, but the

integral
∫
R2 f(z)dz is not defined. We even have such examples in R.

Definition 147 (Absolute convergence). The D ⊂ R2 be an open set, and f : D → R.

Write f = f+ − f−, with f+, f− non negative. We say that f is absolutely integrable if

both f+, f− are integrable, and its integral is the sum of integrals.

Because of the difficulties discussed above, in Lebesgue integrals (which are more

general than Riemann) this is the definition of integrability.

Comment: The comparison test holds in this case as well. E.g., if 0 ≤ f ≤ g in R2

and g is integrable in R2 then f is also integrable. (Try to prove.)

Example: unbounded functions

Let

D = {z ∈ R2 : ‖z‖ < 1}.
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Let f : D → R be

f(z) =
1

1− ‖z‖2
.

This function is positive but unbounded on D, and it approaches ∞ on ∂D, which is a

circle. For n ≥ 1, let

En = {z : ‖z‖ ≤ 1− 1/n};

these are increasing sets whose union is D. Use polar coordinates:

(x, y) = (r cos θ, r sin θ).

We have ∫
En

f(z)dz =

∫ 2π

0

∫ 1−1/n

0

r

1− r2
drdθ

= 2π · −1

2
ln(1− r2)

∣∣∣1−1/n
0

= −π ln(1− (1− 1/n)2)

= −π ln((2/n)− (1/n)2)→∞,

when n→∞.

Exercise 148. What happens with

f(z) =
1

(1− ‖z‖2)2
?

Example: Gauss integral

What is

I =

∫ ∞
−∞

e−x
2

dx?

This is a one-dimensional integral. We can not “use” elementary functions to compute

it. The trick is: try to compute the square of this integral I2, and interpret it as a two-

dimensional integral. Fix r0 large and consider the integral of e−x
2−y2 over [−r0, r0]2.

We have

I2 ≈
(∫ r0

−r0
e−x

2

dx

)2

=

∫
[−r0,r0]2

e−x
2−y2dxdy . . .
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We replace the cube by the ball:

≈
r0 is large

∫
B(0,r0)

e−x
2−y2dxdy = . . .

Use polar coordinate:1 (x, y) = (r cos θ, r sin θ). The domain becomes [0, r0] × [0, 2π].

We know J(r, θ) = r. We get:∫ r0

0

∫ 2π

0

e−r
2

rdrdθ = −2π
1

2
e−r

2

∣∣∣∣r0
0

→
r0→∞

π.

The answer to the original question is I =
√
π.

1This transformation is not invertible on a line, which has measure zero, so does not affect integrals.


	Preliminaries
	Indefinite integrals
	Definite integrals
	The fundamental theorem of calculus
	Generalized integrals
	Series
	Sequences of functions
	Multivariate functions
	Iterated integrals
	Volumes

