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Chapter 1

Probability spaces

1.1 Introduction

This is a mathematical course, so we shall see definitions, theorems and proofs, but this

theory comes with many good examples from real life, physics, economics, etc. Through-

out the course, you are encouraged to seek such examples, which will also improve your

understanding of the definitions, and your ability to prove theorems.

The basic object we shall study is a probability space, which is a model for some

system that we are interested in, like a container full of gas in physics, or a market in

economics.

One of the objectives of the course, and you will need to challenge yourself to achieve

this goal, is to be able to correctly apply the mathematical theory we shall discuss in

examples from reality. This ability is crucial in many disciplines, from natural science

to economics and social sciences.

Let us start with a simple example. Consider a system consisting of one fair coin.

The system has 2 states. Each state has a probability 1/2 associated with it. We model

this system by a probability space.

The definition is slightly more abstract for reasons we shall understand later on.

Definition 1 (Probability space). A probability space is a tuple (Ω,F ,Pr) so that

• The sample space Ω is a set.

• The set of events F ⊆ 2Ω is a σ-field (a.k.a. σ-algebra).

• The probability function/measure Pr : F → [0, 1] is a normalised and σ-additive

map.

Properties 2, 3 are defined below.

5



6 CHAPTER 1. PROBABILITY SPACES

Intuition:

• The outcome of an experiment is an element ω in Ω.

• The elements of F are called events, or measurable sets. They correspond to the

type of questions we can ask about the system: for every F ∈ F , the question “is

ω ∈ F?” may be answered. On one hand, F should be reach enough so that it

contains all questions of interest for us. On the other hand, we shall see that F
can not be too general as then the overall structure collapses.

• The value Pr(F ) corresponds to the probability/chance that the answer to this

question is “yes.”

1.2 Examples

Let us consider several examples first. Later we complete the formal proof.

A fair die. In this case, the set of possible outcomes is Ω = {1, 2, 3, 4, 5, 6} = [6].

The set of possible questions is all subsets of Ω

F = 2Ω = {F ⊆ Ω}.

The number of events is

2|Ω| = 26.

The probability of {1} is 1/6. So is Pr({i}) for all i ∈ Ω. The probability of {1, 6} is

1/3. In general, the probability of F ∈ F is

Pr(F ) =
∑
i∈F

Pr({i}) =
|F |
|Ω|

=
|F |
6
.

Specifically, Pr(∅) = 0 and Pr(Ω) = 1.

Two dice. The sample space is

Ω = [6]× [6] = {(i, j) : i, j ∈ [6]}.

The set of events is

F = 2Ω.

The probability of (1, 1) is 1/36. The probability of

E = {(i, j) : i+ j = 8} = {(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)}
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is

Pr(E) =
7

36
.

In general,

Pr(F ) =
|F |
|Ω|

.

A random dart. Here the goal is to model a choice of a unifrom random point in a

domain D. Consider e.g. the unit circle D = {e2πθi : θ ∈ R} ⊂ C. What is the sample

space?

Ω = D.

What is the set of events? We can ask “what is probability of landing in right half of

circle?” and similar questions. More general, there is a question for every arc. But there

are many more events (two disjoint arcs, a point, ...). We shall not define F formally

for now.

What is the probablity function? We shall not define formally as well (we do not

know what is F), but if E is an arc then we set Pr(E) as the length of the arc divided

by length of the circle 2π.

1.3 Completing the definition

Having a few examples to keep in mind, we provide a formal definition of F ,Pr.

Definition 2 (Set of events). The set F ⊆ 2Ω is a σ-field, that is, it satisfies the

following properties

• ∅ ∈ F .

• If F ∈ F then F c = Ω \ F ∈ F .

• If F1, F2, . . . ∈ F then
∞⋃
i=1

Fi,
∞⋂
i=1

Fi ∈ F.

This property of F is not so important when Ω is finite, but it is when Ω is infinite.

The second property corresponds to saying that every yes/no question can also be a

no/yes question.

The third property is related to that questions Q1, Q2 can give new questions e.g. “is

both answers are “yes”?” which corresponds to intersection (infinitely many intersections

allows the questions to be more informative).

Definition 3 (Probability measure/function). The function Pr : F → [0, 1] is



8 CHAPTER 1. PROBABILITY SPACES

• normalized: Pr(Ω) = 1.

• σ-additive: For all F1, F2, . . . ∈ F that are pairwise disjoint (i.e. Fi ∩ Fj = ∅ for

all i 6= j),

Pr

(
∞⋃
i=1

Fi

)
=
∞∑
i=1

Pr(Fi).

A function Pr is called additive if it satisfies the second property for finitely many

sets. Additivity is a weaker restriction than σ-additivity.

First simple conclusions and intuition about σ-additivity:

Lemma 4. If F1 ⊆ F2 in F then Pr(F1) ≤ Pr(F2).

Proof.

Pr(F2) = Pr(F1 ∪ (F2 \ F1)) = Pr(F1) + Pr(F2 \ F1) ≥ Pr(F1).

Explain to yourself the validity of the equalities/inequalities from definitions.

Lemma 5. If F1, F2, . . . ∈ F are pairwise disjoint then limi→∞ Pr(Fi) = 0.

Proof. Assume towards a contradiction that there are infinitely many i1, i2, . . . so that

Pr(Fij) ≥ ε for all j for some ε > 0. Then, for all N ∈ N, using previous lemma,

1 = Pr(Ω) ≥ Pr

(
N⋃
j=1

Fij

)
=

N∑
j=1

Pr(Fij) ≥ εN.

This is a contradiction for N > 1/ε.

Lemma 6 (Inclusion-exclusion). Let1 F1, . . . , Fn ∈ F . Then,

Pr

⋃
i∈[n]

Fi

+
∑

S⊆[n]:S 6=∅

(−1)|S| Pr

(⋂
i∈S

Fi

)
= 0.

Proof. An exercise. Observe similarity to
∑

S⊆[n](−1)|S| = 0.

1.4 Discrete spaces

Let Ω be countable (or finite). Let (pi : i ∈ Ω) be non negative real numbers so that∑
i∈Ω pi = 1. Define

F = 2Ω.

1There is no infinite analog: If Fi = F for all integer i then the left hand side does not absolutely
converge.
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Define for F ∈ F ,

Pr(F ) =
∑
i∈F

pi.

Claim 7. The above is a probability space.

Proof. An exercise.

This is a generic construction of discrete probability spaces (i.e. when Ω is countable).

The probability functions is first defined over the atoms, elements of Ω. The set of events

and probability function is then generically defined. It can be verified that every discrete

(namely Pr(F ) > 0 for all F , and with some regularity assumptions on F) probability

space can be defined in this way.

1.5 σ-fields?

In the dart example, Ω is the unit circle. What is the underlying F? It turns out that

there are several reasonable definitions for F . One example is call the Borel σ-field (the

minimal one containing all arcs). We shall not discuss it in detail here, it will be deeply

addressed in the course on real functional analysis. But roughly F contains all arcs, and

is closed under complements and countable unions and intersections.

Well, why can’t we just take F to be all subsets of Ω? It turns out that such a

definition does not make sense (in some sense). Consider the dart example from before.

Let Ω be the unit circle

Ω = {eiθ : θ ∈ R} ⊂ C.

Assume we wish to define a uniform distribution on Ω. In that case, if F ∈ F and

F ′ ∈ F is a rotation of F , then Pr(F ) = Pr(F ′). We call such a function Pr invariant

under rotation.

Lemma 8. There is no σ-additive normalized function that is invariant under rotation

and defined over all subsets of Ω.

This lemma shows that there is no consistent way to define a probability measure

even in this simple case, if we do not restricted Pr to be defined only on some of the

subsets.

Proof. We shall see that for every Pr that is σ-additive, normalized and invariant, there

is a “non measurable” set2. Assume towards a contradiction that such a function exists.

2Assuming the axiom of choice.
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Define a relation ∼ on Ω by θ ∼ φ iff

e2πiθ = e2πi(φ+
√

2z)

for some z ∈ Z. Verify that it is an equivalence relation. We thus get a partition of Ω

to equivalence classes. For every such class C, let θC be a choice of representative of C.

Consider the set of representatives

F0 = {θC} ⊂ Ω.

Denote by Fz the rotation of F0 by angle
√

2 · 2πz.

First, by definition,
⋃
z Fz = Ω.

Second, the sets F0, F1, F−1, . . . are pairwise disjoint. Indeed, for all θ,

e2πiθ 6= e2πi(θ+q
√

2)

for every rational q ∈ Q, since otherwise q
√

2 = n for some n ∈ N, but
√

2 is not rational.

So, if Pr(F0) = 0 then

0 =
∑
z

Pr(Fz) = Pr(Ω) = 1,

which is a contradiction. However, if Pr(F0) > 0 then

∞ =
∑
z

Pr(Fz) = Pr

(⋃
z

Fz

)
= Pr(Ω) = 1,

which is also a contradiction.

We have seen a need to choose F carefully enough so that the overall structure makes

sense on one hand and useful on other hand.

Summary: We have defined a probability space (Ω,F ,Pr), seen some examples of

simple spaces, and provided some ideas on why this definition is needed.



Chapter 2

Independence and conditioning

A probability space is a model for a process or an experiment. We would like to have

mathematical tools and notions to formally study and understand such objects. We now

introduce two such basic notions (which distinguish it from general measure theory).

2.1 Independence

The idea of statistical independence is natural. When we toss a coin twice, experience

tells us that the second outcome has nothing to do with the first outcome. The changes

of the value of a house in China seems independent of that of a house in Peru. We now

provide the formal meaning to this concept.

Definition 9. The events F1, F2, . . . ∈ F are independent if for every finite non empty

subset I ⊂ N,

Pr

(⋂
i∈I

Fi

)
=
∏
i∈I

Pr(Fi).

Let us consider some examples:

Two coins. Consider two tosses of a fair coin. Choose

Ω = {0, 1}2,

F = 2Ω and define for all ω ∈ Ω,

Pr(ω) = Pr({ω}) =
1

4
.

(Here and in the future we shall abuse notation and replace a singleton set by the element

in contains.)

11
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Define E1 as the event that the first coin is 1,

E1 = {(1, 0), (1, 1)}.

Define E2 as the event that the second coin is 1. The observation is that E1, E2 are

independent:

Pr(E1) = Pr(E2) =
1

2
,

and

Pr(E1 ∩ E2) = Pr({(1, 1)}) =
1

4
.

Define E3 as the event that the number of 1s is even, E3 = {(1, 1), (0, 0)}. Are E1, E3

independent? Less clear. Check

Pr(E1 ∩ E3) = Pr({(1, 1)}) =
1

4
,

and indeed they are independent.

Exercise. Consider the experiment of tossing two fair dice. What is the probability

space? We say that an event E ⊂ F depends only on the first die if for any (i, j) ∈ F
we have (i, j′) ∈ F for all j′. Prove that if E1 depends only on the first die, and E2

depends only the second die, then E1, E2 are independent.

Pairwise versus general independence. Let Ω be all vectors in {0, 1}3 with even num-

ber of ones. |Ω| = 4. Consider the uniform distribution on Ω: for all x = (x1, x2, x3) ∈ Ω,

Pr(x) =
1

4
.

Denote by Ei, i ∈ {1, 2, 3}, the event that the i’th bit is one, that is,

Ei = {x ∈ Ω : xi = 1}.

Thus,

Pr(Ei) =
1

2
.

For every i 6= j, the two events Ei, Ej are independent. Are E1, E2, E3 independent?

Well, no.

E1 ∩ E2 ∩ E3 = ∅.

The fact that there are pairwise independent distributions that are not fully inde-

pendent is helpful in derandomization of randomized algorithms.

Geometric meaning. In the future we shall discuss geometric meaning, but we need

more definitions for that.
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Summary. Saw definition of independence, and some simple examples. Meaning will

become clearer in future.

2.2 Conditioning

Here we provide a formal meaning to the idea of obtaining more information about the

world, or looking at specific part of it.

What is the probability that the height of the first person we meet is less that 1.5

meters? How does our estimate change if we are told that we are standing at the entrance

to a kindergarden?

Definition 10. Let B ∈ F be so that Pr(B) > 0. The probability of A ∈ F conditioned

on B is defined as

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

The semantics of Pr(A|B) is the probability of A when we are guaranteed that B

has happened.

Examples

Independence. If A,B are independent with Pr(B) > 0, then

Pr(A|B) =
Pr(A ∩B)

Pr(B)
=

Pr(A) Pr(B)

Pr(B)
= Pr(A).

In words, knowledge of B does not change the perception of A.

A fair die. Consider one toss of a fair die. Denote by A the event that the outcome

is 4, and by B the event that the outcome is at least 4.

Pr(A|B) =
1/6

1/2
=

1

3
,

and

Pr(B|A) =
1/6

1/6
= 1.

Medical exams I. There is a syndrom, let us call it the X syndrom. There are two

medical tests A,B that provide statistical information about the possibility of having

syndrom X. A person gets the following results: Test A says that his chance of having

X is 1 chance in 100. Test B says that his chance of having X is 1 chance in 1, 000. It

seems that most likely this person does not have X. From A,B we can get an even more

accurate answer by combining the two results together. It turns out that combining the

two tests actually yield that the person’s chance of having X is 1 in 2!
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How can this be? The basic reason is that X may be small in A, and X may be

small in B, but X is large in A ∩B. Consider an example...

The theory allows to formally argue. We introduce two general helpful tools.

2.2.1 Bayes’ rule

A useful tool in this mental exercise is a simple equality called Bayes’ rule.

Theorem 11 (Bayes’). If A,B ∈ F have positive probabilities then

Pr(A ∩B) = Pr(A|B) Pr(B) = Pr(B|A) Pr(A).

The importance of this rule, as we shall see in the test example, is that it allows us

to move from conditioning on A to conditioning on B, and vice versa.

Proof. By definition.

Bayes’ rule: Think of H as an hypothesis to be learnt. The quantity Pr(H) is the

prior estimate for the probabilty of H. After observation an experiment E, we have

learnt something, and we get to posterior probability Pr(H|E). The number Pr(E)

indicates how probable it is to see outcome E, and the smaller it is, the larger the

impact (the more the posterior information be differ from the prior one).

Let us briefly discuss Bayesian inference. Assume we are observing some system.

What determines the behvior of the system is a parameter θ0. We do not know what

the “real” value of θ0 is, but we have some idea concerning its disribution. The prior

disribution is p(θ0). Now, we have run some experiment, which does not tell us in general

what θ0 is, but provides some information x. Our understanding of the system tells us

what Pr(x|θ) for all θ is. (Example: θ0 is uniform in [0, 1/n, 2/n, . . . , 1] and the measure

x is a coin with bias θ which we do not know and want to learn.)

We have a prior distribution

p0(θ) = Pr(θ).

After a measurement x1, we get a posterior distribution

p1(θ) =
Pr(x1|θ) Pr(θ)

Pr(x)

where Pr(x) =
∑

θ′ P (x|θ′)p0(θ′). This choice is of course inspired by Bayes’ theorem.

This is a new distribution on the possible values of θ, which is “closer to the truth”

than the prior one. We can keep going an eventually we get a distribution that is highly

concerntrated at θ0, which is the underlying parameter we are interested in.
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In general it is useful in many statistical applications. Some examples are learning

theory, statistical predictions, spam filters, and more.

2.2.2 Law of complete probability

Another useful tool in the law of complete probability.

Theorem 12 (Law of complete probabilty). Let B1, B2, . . . ∈ F be a partition1 of Ω so

that Pr(Bi) > 0 for all i. For all A ∈ F ,

Pr(A) =
∑
i

Pr(A|Bi) Pr(Bi).

The importance of this law is that it allows to break down the perhaps complicated

computation of Pr(A) to simpler parts.

Proof. Use the σ-additivity of Pr and that A ∩B1, A ∩B2, . . . is a partition of A.

Example: A lottery. There is a shop that gives 100 USD to a random person that

arrives on a certain day. Assume that the probability that k ≥ 0 people arrive besides

me is 2−k−1. (Note that
∑

k 2−k−1 = 1.) What is the probability that I win?

(What is the probablity space?)

Denote by A the event that I win. Denote by Bk the event that k people arrived

besides me. Thus,

Pr(A|Bk) = 1/(k + 1).

The events Bk partition Ω. So,

Pr(A) =
∑
k

2−k−1/(k + 1) = ln(2) ≈ 0.69.

(To compute this sum, use that the derivative of
∑

k≥1 x
k/k is a geometric sum, which

we know as a function of x.)

Does it make sense? I win with probability roughly 70 percent? What about the

second person to come? How can he win with probability 70 percent as well?

2.2.3 One more example

Medical exam II. There is some illness. People can be either healthy or sick. There is a

medical test for illness. The test can either say + or −, where + should be interpreted

as positive or sick. Thus,

Ω = {h, s} × {+,−}.
1That is, Bi ∩Bj = ∅ for all i 6= j, and Ω =

⋃
i Bi.
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Think of meaning of each of the 4 options.

There are the healthy people

H = {(h,+), (h,−)},

and the sick people S = Ω \H. There are people who got positive answer

P = {(h,+), (s,+)},

and the people who got negative answer N = Ω \ P .

Most people are healthy

Pr(H) = 0.99.

The test is pretty accurate

Pr(P |H) = 0.01, Pr(P |S) = 0.99.

What is the probability that one is sick, given that her test was positive? What is

Pr(S|P )?

It seems as if the exam is pretty accurate, so a positive answer should mean that

given a positive answer the person is most likely sick.

We know Pr(P |S) and we want to compute Pr(S|P ). Bayes’ rule implies

Pr(S|P ) =
Pr(P |S) Pr(S)

Pr(P )

and the law of complete probability

Pr(P ) = Pr(P |S) Pr(S) + Pr(P |H) Pr(H) = 0.99 · 0.01 + 0.01 · 0.99.

The answer is thus

Pr(S|P ) =
1

2
.

So although the test greatly improves the evidence that the person is sick, it is still far

from fully confirming it. A high level reason for this phenomenon is that the accuracy

of the test is roughly 0.01 while it is supposed to distinguish a rare event that happens

0.01 of the time.

Summary. Defined independence and conditioning. Gave examples for applications

of these notions.
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Bernoulli trials

There are many specific examples of probability spaces that are applicable to daily

scenarios. We shall consider the example of a glass cups factory. Assume this factory

manufactures n = 1, 000 cups a day, but the probability that a cup is broken in the

process is p = 0.01.

How many cups does the factory actually produce? There are n cups roughly p of

them are broken so overall roughly pn = 100 cups are broken and (1− p)n = 9, 900 cups

are good. This is still just a rough estimate. What is probability that exactly k = 100

cups are broken? Well, it is (
n

k

)
pk(1− p)n−k.

But what is this number? Later on we shall see how to analyse it pretty accurately, but

for now we just give an estimate.

Definition 13. A (n, p) Bernoulli or Binomial space is defined by Ω = {0, 1, . . . , n}, by

F = 2Ω, and by

Pr(k) =

(
n

k

)
pk(1− p)n−k

for every k ∈ Ω.

Theorem 14. Let δ > 0. The probability of the event

E = {k ∈ Ω : |k − pn| ≥ δn}

in a (n, p) Bernoulli space is at most

Pr(E) ≤ 2

δ2n
.

Specifically, when n→∞, this probability tends to 0.

17
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This theorem is a special case of the weak law of large numbers, which says that the

average of many independent samples tends to be close to what one expects. We shall

address it later in the course. We also note that the upper bound on Pr(E) is far from

sharp, but is a first evidence of this phenomenon.

We shall not prove the theorem here, because we shall see a more general proof later

on. But we provide some directions for a possible proof. We have

Pr(E) =
∑

0≤k<(p−δ)n

bk +
∑

(p+δ)n<k≤n

bk

where

bk =

(
n

k

)
pk(1− p)n−k.

There are several ways to continue. One is to show that say for k < (p − δ)n the ratio

pk/pk+1 is small (and the opposite for large k). Another is to estimate pk using Stirling’s

approximation.

Before seeing some applications of this theorem, let us describe a different space in

which Bernoulli trials can reside. Let Ω = {0, 1}n, let F = 2Ω, and let

Pr(x) = p|x|(1− p)n−|x|

for x ∈ Ω where |x| is the number of ones in x. This space is a refinement of the previous

space. It provides more information about the process, i.e., it says exactly which trials

failed instead of just counting the number of failing trials. This examples shows that

there is no uniqueness in defining a space for a given scenario.

3.1 Approximation theory

Here we provide Bernstein’s proof of a classical theorem of Weirstrass, about approxi-

mating continuous functions by polynomials.

Theorem 15. For every continuous f : [0, 1] → R, there is a sequence of polynomials

f1, f2, . . . that uniformly converge to f . That is, for all ε > 0, there is N so that for all

n ≥ N we have |f(x)− fn(x)| < ε for all x ∈ [0, 1].

Bernstein in fact explicitly described how to approximate f .
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Proof. Define fn(x) as the “average1 of f with respect to a Bernolli (n, x) experiment”

fn(x) =
n∑
k=0

f(k/n)

(
n

k

)
xk(1− x)n−k.

For example f0(x) = f(0), f1(x) = (1−x)f(0)+xf(1) and f2(x) = (1−x)2f(0)+2x(1−
x)f(1/2) + x2f(1).

Let ε > 0. Choose δ > 0 so that |f(x) − f(y)| < ε/2 for all |x − y| < δ. Let

M = max{|f(x)| : x ∈ [0, 1]}.
Estimate, since

∑
k

(
n
k

)
xk(1− x)n−k = 1,

|f(x)− fn(x)| ≤

∣∣∣∣∣∑
k

(f(x)− f(k/n))

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

k:|x−k/n|<δ

(f(x)− f(k/n))

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣
+

∑
k:|x−k/n|≥δ

(|f(x)|+ |f(k/n)|)
(
n

k

)
xk(1− x)n−k

:= I + II.

To bound I, use choice of δ,

|I| ≤
∑
k

(ε/2)xk(1− x)n−k = ε/2.

To bound II, use the weak law of large numbers for a (n, x) Bernoulli,

|II| ≤ 2M
2

δ2n
≤ ε/2,

as long as N is large enough (it is important here that the bound from weak law for

Bernouli trials does not depend on x).

3.2 Normal numbers

Here we consider an infinite variant of Bernoulli trials, and its connection to “numerically

nice” numbers. This short discussion is less formal than usual.

1We shall later give a formal meaning to it.
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Normal numbers in base 2. Every number x ∈ [0, 1] can be represented in binary as

x = 0.x1x2 . . . where xi ∈ {0, 1} for all i. Define the fraction of ones in x up to n as

ρn(x) =
|{i ≤ n : xi = 1}|

n
.

A number is called normal if

lim
n→∞

ρn(x) =
1

2

(specifically the limit exists). That is, roughly half of its coordinates are 1 and half are

0. The number 0.01010101 . . . is normal.

The probability space. Let Ω = {0, 1}N. That is, there is an infinite sequence of

experiments. All events are generated from subsets of the form

F = {x ∈ Ω : x1 = a1, x2 = a2, . . . , xm = am}

for some a1, . . . , am ∈ {0, 1}. (This is the product topology, and such events are cylin-

ders.) The probability of such an F is

Pr(F ) = (1/2)|a|(1/2)m−|a|.

It can be shown that Pr can be extended to all of F .

Almost every ω ∈ Ω corresponds to a unique x ∈ [0, 1] as above. The only exceptions

are rational numbers, but since there are only countably many of them, their total

probability mass is 0. Indeed, for every ω ∈ Ω it holds that Pr(ω) = 0, and Pr(Q) = 0

by σ additivity.

Let

Ai = {x ∈ Ω : xi = 1}.

The set A1 corresponds to the left half of [0, 1], the set A2 corresponds to two quarters,

and so forth. Each Ai is a union of 2i−1 dyadic intervals. It can be verified that A1, A2, . . .

are independent (as events).

The theorem above says that for all δ > 0,

lim
n→∞

Pr ({x ∈ [0, 1] : |ρn(x)− 1/2| < δ}) = 1.

This does not formally mean that the measure of normal numbers is 1, or that the

measure of numbers that are not normal is 0. This stronger statement turns out to be

true:

Pr({x ∈ [0, 1] : x is normal in base 2}) = 1,
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and follows from the strong law of large number which we discuss later on.

Normal numbers. A normal number is a number that is normal in every base b. Since

there are countably many bases, σ additivity actually implies that

Pr({x ∈ [0, 1] : x is normal}) = 1.

There are very few explicit examples of numbers that were proven to be normal, and it

is believed that
√

2 or π are normal, but no proof is known.
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Chapter 4

Random variables

We now discuss one of the basic and useful notions in this theory. Random variables

represent measurement of the system, like its temprature, pressure, price, etc. We have

already seen one such measurement: How many coin tosses were tails?

Definition 16. Let (Ω,F ,Pr) be a probability space. A function X : Ω→ R is a random

variable if for every interval I ∈ R the set X−1(I) is an event in F .

In other words, a random variable is a measurable real valued function on Ω. The

reason for the measurability is that we want to be able to answer questions of the form

“what is the chance that X is positive?”

A random variable is a generalisation of the notion of event. Why? Given an event

A ∈ F , we can define the random variable that is 1 on A and 0 elsewhere. It is called

the characteristic variable of A, and denoted 1A.

Definition 17. A random variables X is discrete if for every x ∈ X(Ω) we have Pr(X =

x) > 0.

Such random variables usually count something, like number of successes, people,

storms.

Every random variable over a discrete space is discrete. But there are non discrete

spaces that have interesting discrete random variables. For example, a store when many

people arrive at random times, but an interesting quantity is how many people arrived

in a single day.

Claim 18. If X is discrete, then X(Ω) is countable.

Proof. The size of {x : Pr(X = x) ≥ 1/n} is at most n.

We shall often treat a discrete random variable over the probability space it defines

(ΩX ,F ,Pr) where ΩX is the countable set of values X attains of R and F with 2ΩX .

23
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Binomial. An (n, p)-Binomial random variable, with p ∈ [0, 1] and n ∈ N, takes

values in {0, 1, . . . , n} and

Pr(X = k) =

(
n

k

)
pk(1− p)n−k

for all k ∈ {0, 1, . . . , n}. We denote this by X ∼ Bin(n, p).

Most random variables come with a story. The story behind this one is: It counts

the number of successes in n independent experiments, where the probability of success

in each is p.

4.1 Operations

Claim 19. The following operations yield random variables: sums, products, limits,

supremum, infimum.

Proof. Let us consider one case for example. If X1, X2, . . . is a sequence of random

variables and X(ω) = limn→∞Xn(ω) exists for all ω then

{ω : X(ω) < a} =
⋃
N∈N

⋃
q∈Q:q<a

⋂
n>N

{ω : Xn(ω) < q}.

This ⊇ is easier: If there is N and q < a so that for all n > N we have Xn(ω) < q

then X(ω) ≤ q < a.

In the other direction, if X(ω) < a then X(ω) = a − r for some r > 0. Let q be so

that a− r < q < a− r/2. And so Xn(ω) < q for all n large enough.

4.2 More examples

Geometric. We write X ∼ Geom(p) if X takes values in {1, 2, 3, . . .} and for every k

in this set

Pr(X = k) = (1− p)k−1p.

It marks the first head in an infinite sequence of random independent coin tosses, each

is head with probability (w.p.) p. Check normalization. Graph.

Let us see what is the probability of {X > k}. (This is how we denote events from

now on.)

Pr(X > k) =
∞∑

`=k+1

(1− p)`−1p = (1− p)k
∞∑
`=1

p(1− p)`−1 = (1− p)k.
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Claim 20 (Memoryless). If X ∼ Geom(p) then it is memoryless, that is, for all k, `

positive natural numbers,

Pr(X > `+ k|X > `) = Pr(X > k).

This property charaterizes all geometric distributions (if X takes values in {1, 2, 3, . . .}).

In words, if in the first ` experiments we did not get head, then the next experiments

are independent.

Proof. First,

Pr(X > `+ k|X > `) =
Pr(X > `+ k,X > `)

Pr(X > `)

=
Pr(X > `+ k)

Pr(X > `)

=
p`+k

p`
= pk.

The other direction follows by induction since Pr(X > k+1) = Pr(X > k) Pr(X > 1) for

all k ≥ 0, which implies what Pr(X = k) is (as a function of Pr(X > 1) = (1− p)).

Poisson. We write X ∼ Pois(λ) for λ > 0 if for all k ∈ {0, 1, 2, . . .},

Pr(X = k) =
λk

k!
e−λ.

It counts the number of phone calls received in an office, or the number of electronic a

radioactive particle emits in a minute. The number λ indicates how many calls arrive

on average. Normalization. Graph.

It may be obtained as a limit. Partition the time interval [0, 1] to n interval of equal

length. Let Xi for i ∈ [n] be the number of calls that arrived in the i’th interval. Assume

that n is large enough so that w.h.p. no Xi is more than one (a simplifying assumption).

What should be Pr(Xi = 1) so that
∑

iXi will have average λ? It should be λ/n, as

for binomials. In fact, X is close to Bin(n, λ/n). (Shall not formally define.) Now, for
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fixed k,

Pr(Xn = k) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=

1

k!

n(n− 1) . . . (n− k + 1)

nk
λk
(

1− λ

n

)n
·
(

1− λ

n

)−k
→n→∞

1

k!
λke−λ.

It is part of a more general family of Poisson processes, which have nice properties.

For every every time interval I = [t1, t2], we can assign a variable XI with distribution

Pois(λ|I|) that measures how many things occurred in I. With the property that if

I ∩ I ′ = ∅ then XI , XI′ are independent (have not formally defined yet).

We have seen 3 examples. There are many more (e.g. negative binomial) but we shall

not discuss them for now.

4.3 Cumulative distribution function

Given a random variable X, we can plot a function that completely describes it.

Definition 21. The cumulative distribution function of X denoted by FX : R → R is

FX(t) = Pr(X ≤ t).

Graph.

Examples:

Geometric. If X ∼ Geo(p) then Pr(X ≤ k) = 1− Pr(X > k) = (1− p)k for every

integer k. For t not integer, fill accordingly.

Discrete. If X is discrete then

FX(t) =
∑
k≤t

Pr(X = k).

These sums are not always easy to calculate or estimate.

Exercise: Order Q as a1, a2, . . .. For q = an ∈ Q, define

Pr(X = q) = 2−n.

This is a probability distribution. What is FX? It is not constant in every interval. The

only points of continuity are the irrationals.

Theorem 22. The function F = FX satisfies the following properties.
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• F (t)→ 0 at −∞.

• F (t)→ 1 at ∞.

• F is monotone non decreasing.

• F is right continuous.

• Pr(X = t) = F (t)− lims→t− F (s).

We shall not write a formal proof, but discuss reasons.

Claim 23. If F satisfies the above 5 properties then F is the cumulative function of

some random variable.

Proof. Choose Ω = R, F Borel, and Pr((−∞, t]) = F (t). Choose X(ω) = ω. It remains

to verify...

4.4 Continuous random variables

We have seen discrete random variables. Their cumulative distribution function (CDF)

F is a step function.

What if F is continuous? Then X is called continuous.

What if F is differentiable?

Definition 24. A random variable X is called (absolutely) continuous if there is a

function fX : R→ R so that1

FX(t) =

∫ t

−∞
fX(s)ds.

The function fX is called the density of X.

F is differentiable where f is continuous, and then F ′ = f .

For every event A ⊆ R,

Pr(X ∈ A) =

∫
s∈A

fX(s)ds.

Specifically, ∫ ∞
−∞

fX(s)ds = 1

1This is Lebesgue integral which we do not discuss in detail in this course.
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and w.l.o.g. for all s,

f(s) ≥ 0.

Examples.

Uniform. A random variable X is uniform in the interval [a, b] if its density is

fX(s) =?. It should model a random point in the line, or the position of a random dart.

Need to be positive, constant, and with integral 1 on [a, b]. So fX(s) = 1/(b − a) if

s ∈ [a, b] and is zero elsewhere. What is CDF? For t ≤ a, it is zero. For t ≥ b, it is one.

For t ∈ [a, b], it is

FX(t) = (t− a)/(b− a).

We denote this by X ∼ U [a, b].

Normal/gaussian. X is gaussian with parameters µ, σ is defined by

fX(s) =
1√

2π · σ
e−

(s−µ)2

2σ2 .

The graph of fX is a bell shaped curved with maximum at µ and width σ. What is

formal meaning of width? It is the distance between transition points between concave

and convex.

This CDF has no closed form. But what is FX(µ)? Since fX is symmetric around µ,

FX(µ) = 1/2. In general, to know FX(s) one needs to look at a table (there are many

online).

Normalization? It is difficult to compute the integral of fX directly, but the square

of the integral is easy and gives 1, using change of variables (x, y)→ (r, θ).

Exponential. X ∼ Exp(µ) is defined by

fX(s) = µe−µs

for s ≥ 0 and 0 elsewhere. So,

FX(t) =

∫ t

0

µe−µsds = 1− e−µt.

It is a model for a random alarm clock that on average starts ringing at time µ.

Claim 25. An exponential random variable is memoryless, that is, for all s, t ≥ 0,

Pr(X > s+ t|x > t) = Pr(X > s).

This is similar to geometric but for a r.v. that takes values in all of R.

There is a tight connection between exponential r.v.’s and Poisson. Recall Poisson

is number of calls in a minute (say). Exponential represents the time the call actually
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arrived. So, if X1, X2, . . . are independent (haven’t formally defined yet) Exp(µ) r.v.’s

then what is Pois(λ)? The number of phone calls, that is,

min{n ∈ N : X1 +X2 + . . .+Xn > 1} − 1

is Possion. What is λ? The first clock rings on average at time µ. So, λ should be 1/µ.

This turns out to be true, but we shall not prove formally for now.

4.5 Mixed random variables

What if F is not continuous nor a step function?

Example: Imagine a car that reaches a traffic light at a random time in [0, 1]. In

[0, 1/2) the light is red, and in [1/2, 1] it is green. Denote by T this the car crosses the

light. So, T ∈ [1/2, 1]. What is Pr(T = 1/2)? Well {T = 1/2} if the car reaches in

[0, 1/2], so Pr(T = 1/2) = 1/2. And what is Pr(T = 3/4)? Well it is zero. So FT is a

step at 1/2 and then it is continuous (draw).

We can generically decompose a r.v. to a discrete part and a continuous part.

Theorem 26. Let FX be a CDF of a random variable X. Then there are Z, Y with Z

discrete and Y continuous so that

FX = αFZ + (1− α)FY

with α ∈ [0, 1].

In words, a general random variable is a convex combination of a discrete and con-

tinuous random variables (not necessarily absolutely continuous!).

One can think of choosing X as follows. Let B ∼ Ber(α). Let Y, Z be two inde-

pendent r.v.’s that are distributed correctly. If B = 1 then X = Z and if B = 0 then

X = Y .

Proof. Let a1, a2, . . . be the points of discontinuity of FX . (Why are there countably

many?) Let Z take values in a1, a2, . . ., where

Pr(Z = ai) = c(Pr(X ≤ ai)− Pr(X < ai))

where c ≥ 0 is normalisation constant. What is c? It is one over

α =
∑
i

Pr(Z = ai).

It is the total sum of jumps. (If α = 0 then X is continuous.)
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What is Y ? Want Y to be continuous.

(1− α)FY = FX − αFZ

so FY is continuous because by construction all of the jumps of FX were cancelled. And

FY tends to 1 at infinity since FX to 1 and αFZ to α.

4.6 Functions of random variables

Example: Let X ∼ U [0, 1]. Denote by Y the area of a square with side length X. It

is also a random variable Y = X2. How is Y distributed? It also takes values in [0, 1].

But for t ∈ [0, 1],

Pr(Y ≤ t) = Pr(X2 ≤ t) = Pr(X ≤
√
t) =

√
t.

So Y is not uniform in [0, 1]. It is more concentrated around 0 than around 1. The map

x→ x2 shrinks around 0.

This construction works in general. If X is a r.v. and h is a measurable function then

h(X) is a also a r.v. Here measurable means that h−1((−∞, t]) is in the Borel σ-field for

all t.

Theorem 27. If h is measurable and strictly increasing then

Fh(X)(t) = Pr(h(X) ≤ t) = Pr(X ≤ h−1(t)) = FX(h−1(t)).

So if X has density fX and h is differentiable then

fh(X)(t) = fX(h−1(t))(h−1)′(t) = fX(h−1(t))(h−1)′(t).

If h is decreasing, there is a minus sign.

What if h is not monotone or invertible? Just partition to parts in which is invertible.

Or even better, analyze FY first, and then compute fY if needed.

For example, let X ∼ [−1, 2] and Y = X2. Then Y is supported on [0, 4]. For every

t ∈ [0, 4],

Pr(Y ≤ t) = Pr(−
√
t ≤ X ≤

√
t).

For t ∈ [0, 1] this is
2
√
t

3
,
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and for t ∈ [1, 3] this is
1 +
√
t

3
.

To know what is fY take derivative of FY . The value fY (1) is of no importance.

4.7 Random vectors

What if we have more that one r.v., and we want to understand the joint distribution

of several of them?

Definition 28. A random vector is a map X : Ω → Rn so that each of its coordinates

is a random variable (i.e. measurable).

As for random variables, we will mostly ignore the underlying probability space.

Example: Let X1 ∼ N(0, 1). Let X2 = 2X1. Then X = (X1, X2) is a random vector.

We can define a CDF by

FX(t) = Pr(X1 ≤ t1, X2 ≤ t2, . . . , Xn ≤ tn).

It has similar properties to that of random variables. In two dimension, it is probability

of X being in an “infinite box with vertex at t.”

A discrete random vector takes countably many values, and then

FX(t) =
∑

i1≤t1,...,in≤tn

Pr(X1 = i1, . . . , Xn = in).

How is X1 distributed? What is FX1? Well,

FX1(t1) = Pr(X1 ≤ t1) = lim
t2,...,tn→∞

FX(t).

A similar statement holds for all i ∈ [n], and in fact for all subset I of [n].

What about probability function of X1?

Pr(X1 = t1) =
∑
t2,...,tn

Pr(X = t).

That is, the marginal probability functions are sums or integrals over the global func-

tions.

If X = (X1, X2) has density fX then the density of X1 is

fX1(t1) =

∫
t2

fX(t)dt2.
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Example, a uniform point in unit ball in plane.

If f(t1, t2) is continuous and

F (t1, t2) =

∫ t1

−∞

∫ t2

−∞
f(s1, s2)ds1ds2

is its integral then

f =
∂2F

∂t1∂t2
.

Comment: the data of X determines that of X1, X2, but the other direction does

not hold. E.g., X1 ∼ Ber(p) and X2 = X1, is very different than when X1, X2 are

independent (which we now formally define).

4.8 Independence

We now define the formal meaning of two random variables being independent. The

intuition is that the value of one does not tell us anything about the value of the other.

The formal definition is more elaborate.

Given a random variable X over (Ω,F ,Pr), the σ-filed FX it generates is defined as

the set of all X−1(I) where I is a Borel subset of R.

Given a random vector (X, Y ) over (Ω,F ,Pr), the σ-field FX,Y it generates is the

set of all (X, Y )−1(I) where I is a Borel subset of R2.

For example, consider Ω = R2 with F Borel, and X1(ω1, ω2) = ω1. Then F is

collection of all measurable subsets of plane, and FX1 is cylinders. Similarly define

X2(ω) = ω2. The intersection of a set in FX1 and a set in FX2 is a “rectangle.”

Definition 29. Let F1,F2 be two sub σ-fields of F . They are called independent over

(Ω,F ,Pr) if every F1 ∈ F1 and F2 ∈ F2 are independent. The two random variables

X1, X2 are called independent if FX1 ,FX2 are independent. Similarly define for several

σ-fields and r.v.’s.

Claim 30. If X = (X1, X2) is discrete then X1, X2 are independent iff Pr(X = t) =

Pr(X1 = t1) Pr(X2 = t2) for all t = (t1, t2).

Example: If X is a uniform random point in a finite domain D ⊂ Z2 then X1, X2

are independent iff D is an axis parallel rectangle. Indeed, if (x1, x2) and (x′1, x
′
2) are in

D then it follows that (x1, x
′
2) is in D. Draw in plane the 3 points. This means that D

is a rectangle (a set of form A×B).

Claim 31. X1, X2 are independent iff FX = FX1FX2 with X = (X1, X2).
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Explanation. If X1, X2 are independent then for all t = (t1, t2),

Pr(X1 ≤ t1, X2 ≤ t2) = Pr(X1 ≤ t1) Pr(X2 ≤ t2).

In the other direction, let us give an example. Consider the event {a1 < X1 ≤ b1, a2 <

X2 < b2}:

Pr(a1 < X1 ≤ b1, a2 < X2 < b2)

= Pr(X1 ≤ b1, X2 ≤ b2)− Pr(X1 ≤ a1, X2 ≤ b2)

− Pr(X1 ≤ b1, X2 ≤ a2) + Pr(X1 ≤ a1, X2 ≤ a2)

= Pr(X1 ≤ b1) Pr(X2 ≤ b2)− Pr(X1 ≤ a1) Pr(X2 ≤ b2)

− Pr(X1 ≤ b1) Pr(X2 ≤ a2) + Pr(X1 ≤ a1) Pr(X2 ≤ a2)

= (Pr(X1 ≤ b1)− Pr(X1 ≤ a1))(Pr(X2 ≤ b2)− Pr(X2 ≤ a2))

= Pr(a1 < X1 ≤ b1) Pr(a2 < X2 ≤ b2).

Claim 32. If X = (X1, X2) has density fX then X1, X2 are independent iff fX = fX1fX2.

4.9 Functions of random vectors

If h : R2 → R is measurable and X is a 2 dimensional random vector, then h(X) is a

random variable.

There are many examples, but an important one is addition. Let h(x1, x2) = x1 +x2.

Assume X1, X2 are independent and are absolutely continuous. Then X1 + X2 has the

following CDF

FX1+X2(t) =

∫
s1

∫
s2≤t−s2

fX(s)ds =

∫
s1

fX1(s1)

(∫
s2≤t−s2

fX2(s2)ds2

)
ds1.

Taking derivative gives

fX1+X2(t) =

∫
s1

fX1(s1)fX2(t− s1)ds1.

This is called the convolution of fX1 and fX2 , and is denote

fX1+X2 = fX1 ∗ fX2 .
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Chapter 5

Moments

So far we have defined relatively abstract notions (and also gave examples of concrete

special cases). Here we start discussing more concrete properties.

Imagine an economic system, consisting of individuals that get salaries. We have an

abstract model of the society, and this model allows to abstractly answer any question

we are interested in. But what are the simplest questions one can ask? The most basic

properties of the society seems to be the average salary in it, and the average differences

between the salaries (the amount of social “inequality”).

We now discuss the mathematical notions that capture these properties, and more.

5.1 Expectation

The expectation of a random variable is what is commonly thought of as “average value.”

Definition 33. Let X be a discrete random variable. It expectation is

EX =
∑
k

Pr(X = k) · k,

if this sum absolutely converges.

Another way to think of expectation is as a center of mass: Imagine mass Pr(X = k)

distributed at a point k. Then EX is the center of mass of the total mass of 1.

Another useful way to compute expectation: If Ω is also discrete this is also equal to∑
ω∈Ω

Pr({ω})X(ω).
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Indeed, by Fubini:

EX =
∑
k

Pr(X = k)k

=
∑
k

∑
ω:X(ω)=k

Pr({ω})k

=
∑
ω

Pr({ω})X(ω).

Definition 34. Let X be an absolute continuous random variable. It expectation is

EX =

∫ ∞
−∞

fX(s)sds,

if this integral absolutely converges.

There is a general definition, but we shall not provide it in this course. We shall state

general theorem about EX, but shall prove only for r.v.’s from the two types above.

5.1.1 Examples

Binomial. X ∼ Bin(n, p). What should EX be? np. Let us see:

EX =
n∑
k=0

Pr(X = k)k

=
n∑
k=0

(
n

k

)
pk(1− p)n−kk

=
n∑
k=1

n

(
n− 1

k − 1

)
pk(1− p)n−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k = pn.

Uniform. X ∼ U [a, b]. Guess? (a+ b)/2. Indeed,

EX =

∫ b

a

1

b− a
sds =

1

b− a
1

2
(b2 − a2) = (a+ b)/2.

Geometric. If X ∼ Geo(p) then EX = 1/p.
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Normal. If X ∼ N(0, 1) then

EX =

∫ ∞
−∞

1√
2π
e−s

2/2sds.

Since it is an odd function, its integral is 0. Similarly, if X ∼ N(µ, σ) then EX = µ.

There are many more examples.

Non examples. Let Pr(X = k) = c/|k|2 for some c > 0 and k non zero integer. The

expectation does not converge.

5.2 Tail formula

There is another useful way to compute expectation.

Theorem 35. If X is a non negative random variables then

EX =

∫ ∞
0

Pr(X ≥ t)dt.

In general,

EX =

∫ 0

−∞
FX(t)dt+

∫ ∞
0

(1− FX(t))dt.

Proof. Let us prove only first part when X is discrete. Use Fubini:

EX =
∑
k≥0

Pr(X = k)k

=
∑
k≥0

Pr(X = k)

∫ k

0

1ds

=

∫ ∞
0

∑
k≥s

Pr(X = k)ds

=

∫ ∞
0

Pr(X ≥ s)ds.

Examples:

- X1, X2 ∼ Exp(λ) independently. Let Y = minX1, X2. What is E(Y )? By defini-

tion? Using tail: Pr(Y > t) = Pr(X1 > t) Pr(X2 > t).

- Convex combination. If FX = αFY + (1− α)FZ then

EX = αEY + (1− α)EZ.
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5.3 Properties

Linearity. A very important property is linearity.

Theorem 36 (Linearity). If X, Y are two r.v. with finite expectation then E(aX+bY ) =

aE(X) + bE(Y ) for all a, b ∈ R.

Try to prove from definition for discrete, say.

Proof. Let us consider a discrete Ω. The basic reason is the formula

EX =
∑
ω∈Ω

Pr({ω})X(ω).

This property is called linearity of expectation. It is an extremely important and

useful property. Part of the importance is that it holds for any two random variables,

not necessarily independent. Examples:

Binomial. Let X1, . . . , Xn be independent Ber(p). How is their sum X distributed?

It is Bin(n, p). Thus,

EX =
n∑
i=1

EXi = np.

Random permutation. Let f : [n]→ [n] be a uniformly chosen random permutation.

Denote by X the number of fixed points in X. What is EX? Let Xi be the indicator of

the event {f(i) = i}. Thus EXi = Pr(f(i) = i) = 1/n. So, EX = n/n = 1. The random

variables e.g. X1, X2 are not independent.

Birthday paradox. What is minimum number k so that if there are k people in a

room the expected number of pairs who share a birthday is at least 1? Denote by Xi,j

the indicator for the event that person i and person j share a birthday, for 1 ≤ i < j ≤ k.

Thus EXi,j = 1/365 and

E
∑
i,j

Xi,j =

(
k

2

)
/365.

This means that the minimum k is roughly
√

730 ≈ 27.

Maximum. We have seen how to use tail formula to compute expectation of minimum.

What about maximum? We can use linearity:

X + Y = min{X, Y }+ max{X, Y }.

So if we know EX,EY and Emin{X, Y } we also know Emax{X, Y }.
Respect order. A basic property of expectation is that it respects order.
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Claim 37 (Respect order). If X, Y are two r.v. so that X(ω) ≥ 0 for all ω ∈ Ω, then

EX ≥ 0.

This is obvious in the cases we considered.

Expectation of a function. Example: Let X ∼ U [0, 1] and Y = X2. By definition,

EY =

∫
fY (t)tdt.

To compute this, we need to compute fY which requires computing FY . There is a

quicker way.

Theorem 38 (Expectation of a function). Let X be a random variable and h be a

measurable function. If X has density fX then

Eh(X) =

∫ ∞
−∞

fX(s)h(s)ds

and if X is discrete

Eh(X) =
∑
k

Pr(X = k)h(k).

This is not obvious from definition.

Proof. Let us prove for Ω discrete:∑
k

Pr(X = k)h(k) =
∑
k

∑
ω:X(ω)=k

Pr({ω})h(X(ω))

=
∑
ω

Pr({ω})(h ◦X)(ω).

Example: X ∼ N(0, 1) and Y = eX . Thus,

EY =

∫ ∞
−∞

1√
2π
e−t

2/2etdt =

∫ ∞
−∞

1√
2π
e−(t2−2t+1)/2e1/2dt = e1/2.

5.4 Inequalities

Inequalities are extremely useful in mathematics, and usually harder to prove than

equalities. Here we consider two well known ones.
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Theorem 39 (Cauchy-Schwartz). If X, Y are two random variables over the same space

so that EX2,EY 2 are finite then

E|XY | ≤
√
EX2EY 2.

Proof. There are several options to prove. One is the use the known inequality for finitely

supported random variables and then use approximations. Another is to consider

p(t) = E(|X|+ t|Y |)2

which is always non negative. Observe that it is finite for all t ∈ R since 2ab ≤ a2 + b2

for all a, b > 0. Write

p(t) = EY 2 · t2 + 2E|X||Y |t+ EX2.

So,

4(E|X||Y |)2 − 4EY 2EX2 ≤ 0,

since otherwise p gets a negative value.

In other words, we can think of r.v.’s as a vector space and of EXY as an inner

product (if it is defined).

What is a convex function? There are several equivalent definitions.

1. h′′ is non negative (if it is defined).

2. The tangent to h at every point is below the graph.

3. The area above h is convex.

4. For every x1, x2 and p ∈ [0, 1],

h(px1 + (1− p)x2) ≤ ph(x1) + (1− p)h(x2).

This exactly corresponds to a r.v. that takes 2 values. To prove for general r.v. use

induction to get all finitely supported r.v.’s and then use approximations to get all.

Theorem 40 (Jensen). If h is a convex function on the image of X then h(E(X)) ≤
Eh(X).

Examples: |x|p for p ≥ 1. ax for a ≥ 1. Specifically, EX2 ≥ (EX)2.

5.5 Variance

We have discussed the “average salary” in the society. What about the “amount of

inequality”? How to measure? It should be the average difference from the average.
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Definition 41. The expectation of a random variables X is defined as

V ar(X) = E(X − E(X))2,

if it is defined.

Use (X − E(X))2 to measure distance instead of |X − E(X)| since is easier to work

with, and is similar to L2 norm.

The variance is always non negative and is zero iff X = E(X) almost surely.

A different formula.

V ar(X) = E(X2)− (EX)2.

Standard deviation. Variance is not measured in the same units as expectation.

The square root of it does. The standard deviation of X is

σX =
√
V ar(X).

The name explains it self.

Examples:

Binomial. Let X ∼ Bin(n, p). Let X1, . . . , Xn be independent Ber(p) so that

X =
∑

iXi.

EX2 =
∑
i,j∈[n]

Pr(Xi = 1, Xj = 1) = np+ n(n− 1)p2.

So,

V ar(X) = np+ n(n− 1)p2 − (pn)2 = np− np2 = np(1− p).

Again, we see how useful is linearity of expectation.

Variational definition of expectation: What is a that minimizes E(X − a)2?

Write

E(X − a)2 = EX2 − 2aEX + a2 = EX2 − (EX)2 + (EX − a)2 ≥ V ar(X).

Translations and dilation. For every a ∈ R,

V ar(a+X) = V ar(X).

And

V ar(aX) = a2V ar(X).
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Sums. When does V ar(X + Y ) = V ar(X) + V ar(Y ) hold? Let us see:

V ar(X + Y ) = E(X − EX)2 + E(Y − E(X))2 + 2E(X − E(X))(Y − E(Y )).

This holds iff

E(X − E(X))(Y − E(Y )) = 0.

This quantity is called covariance:

cov(X, Y ) := E(X − E(X))(Y − E(Y )) = E(XY )− E(X)E(Y ).

If X, Y are independent then

E(XY ) = E(X)E(Y )

which means

cov(X, Y ) = 0.

For example, when (X, Y ) are discrete,

E(XY ) =
∑
k

Pr(XY = k)k =
∑
k,`

Pr(X = `) Pr(Y = k/`)` · (k/`) = E(Y ) · E(X).

In this case, X, Y are called uncorrelated.

The other direction does not always holds. For example, if X ∼ N(0, 1) and Y = X2

then

EX = 0

and

cov(X, Y ) = EX3 = 0

since it is the integral of an odd function.

5.6 Higher moments

We have seen the importance of EX,EX2. In general, these are the 1st and 2nd moments

of X. The nth moment is defined as EXn if it is defined, and the nth absolute moment is

defined as E|X|n. Observe if the 2nd moment is defined then so is the 1st: EX ≤
√
EX2.

Similarly, for all m < k,

E|X|m = E(|X|k)m/k ≤ (E|X|k)m/k,

due to convexity of x 7→ xm/k.



Chapter 6

Laws of large numbers

6.1 Probability estimates

One of the most useful things to do is to obtain good probability estimates.

We start with the simplest example. If the average height of a person is 1.7 meters,

what is probability that a person have height larger than 3.4 meters? One half.

Theorem 42 (Markov’s inequality). Let X be a non negative random variables. For

every a > 0,

Pr[X > aE(X)] < 1/a.

Proof. Consider discrete X for example.

EX =
∑

k>aE(X)

Pr(k)k +
∑

0≤`≤aE(X)

Pr(`)` ≥ aE(X) Pr(X > aE(X)).

This is an extremely simple inequality but many others are built on top of it.

One example that you have seen in the exercise. Let G ∼ G(n, 1/2) be a random

graph. The expected number of cliques of size k = 3 log n is G is at most nk2−k(k−1)/2 <

2/n. So, if n is large, the probability that G has a clique of size larger than k is at most

2/n.

Markov’s inequality is tight. For every a there is a r.v. X so that

Pr(x ≥ aE(X)) = 1/a.

It is the random variables that takes the value aE(X) w.p. 1/a and the value 0 otherwise.

Non negativity is important.
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We can apply Markov’s inequality to more complicated random variables and get

better estimates.

Theorem 43 (Chebyshev’s inequality). Let X be a random variables with finite vari-

ance. For all a > 0,

Pr[|X − E(X)| > aσ] < 1/a2,

where σ =
√
V ar(X) is the standard deviation of X.

Proof. Denote Y = |X − E(X)|. It is a non negative random variables. Notice EY 2 =

V ar(X). Apply Markov’s inequality on Y .

Pr[Y > aσ] = Pr[Y 2 > a2V ar(X)] < 1/a2.

This inequality roughly means that if σX � E(X) then the probability that X takes

values that are far from it expectation is small.

6.2 Weak law of large numbers

We can go back to a property we saw, and described applications of, but did not prove

because we did not have the right tools (we could have proven it with a some amount

of calculations). We now prove it.

The special case we saw is:

Theorem 44. Let X ∼ Bin(n, p) with p ∈ (0, 1). For all δ > 0,

Pr(|X − pn| ≥ δn) ≤ p(1− p)
δ2n

≤ 1

4δ2n
.

The general theorem with finite variance is:

Theorem 45 (Weak law). Let X1, . . . , Xn be independent random variables with expec-

tation µ and variance σ2
i < σ. Let X = (1/n)

∑
iXi. For all δ > 0,

Pr(|X − µ| ≥ δ) ≤ σ2

δ2n
.

Specifically, the probability tends to 0 as n→∞.

Proof. Due to independence,

Var(X) =
∑
i

V ar(Xi/n) ≤ n(σ/n)2 = σ2/n.
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Using Chevyshev,

Pr(|X − µ| ≥ δ) = Pr

(
|X − µ| ≥ δ

√
n

σ

σ√
n

)
≤ σ2

δ2n
.

The condition on the variance being finite in not necessary.

Theorem 46 (Khintchine). Assume X1, X2, . . . are i.i.d. random variables, each dis-

tributed as X so that EX = µ. Let Sn = (1/n)
∑n

i=1Xi. Then,

lim
n→∞

Pr(|Sn − µ| > δ) = 0.

Sketch. The proof is by an appropriate approximation. Consider discrete X for example.

Without loss of generally assume, EX = µ = 0. Let ε > 0. Let n be large enough.

Truncation and its properties. Truncate X as

X = X≤n +X>n,

where

X≤n = X · 1|X|≤n.

The rational is the we can’t bound the moments of X, however we can bound the

moments of X≤n, and we think of X>n as the error term that we just need to control.

Partition Sj to two parts. Define

(Sj)≤n = (1/j)
∑
i≤j

(Xi)≤n

and

(Sj)>n = (1/j)
∑
i≤j

(Xi)>n.

This is not the truncation of Sj but the average of truncations of X.

Bounding error. The sequence

E(|X>n|) =
∑
k

Pr(X = k)|k|1|k|>n

of n is decreasing and bounded from below, so its limit is its infimum which is 0 since

E|X| <∞ (it is the tail of a converging sum). Thus, E|X>n| → 0 when n→∞. So, by

convexity,

E|(Sj)>n| ≤ εδ.
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Markov’s inequality implies

Pr(|(Sj)>n| ≥ δ) ≤ ε.

Bounding bulk. First, expectation: as above, if n is large then

|E(Sj)− E(Sj)≤n| = |E(Sj)>n| ≤ εδ.

Second, variance:

V ar((Sj)≤n) =
∑
i≤j

V ar(X≤n/j) ≤ (1/j)2jn2 ≤ n2/j,

using independence.

So,

Pr (|(Sj)≤n − µ| ≥ δ) ≤ Pr (|(Sj)≤n − E(Sj)≤n| ≥ δ − δε)
≤ Pr (|(Sj)≤n − E(Sj)≤n| ≥ δ/2)

≤ 4V ar((Sj)≤n)

δ2
≤ 4n2

δ2j
< ε,

for j large.

Together. By the union bound,

Pr(|Sj − µ| ≥ 2δ) ≤ Pr(|(Sj)≤n − µ| ≥ δ) + Pr(|(Sj)>n| ≥ δ) ≤ 2ε.

Choice of j. We first chose n = n(X, ε, δ) large, and then chose j = j(n, ε, δ) =

j(X, ε, δ) large.

We can see how much more difficult it is to prove without assumption of finite

variance. This is a phenomenon that often occurs.

There are also stronger variants of this law, but we shall not discuss now (we have

briefly discussed before).

6.3 Types of convergence

The weak law says that a certain sequence of probabilities tends to 1. This is one type

of convergence, called weak or in probability.

Definition 47 (Convergence in probability). The sequence of random variables (Xn)

converges to X in probability or weakly if for every ε > 0,

lim
n→∞

Pr(|Xn −X| > ε) = 0.
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In this language, the weak law says that the average of i.i.d. variables converges

weakly to its expectation (which is a constant r.v.).

There is also a stronger type of convergence.

Definition 48 (Convergence almost surely). The sequence (Xn) converges to X almost

surely (a.s.) or strongly if there is a set A ∈ F so that Pr(A) = 1 and limn→∞Xn(ω) =

X(ω) for every ω ∈ A.

This is indeed a stronger type of convergence.

Theorem 49. If (Xn) converges to X a.s. then it converges to X in probability.

Proof. Let ε > 0 and let

Bk = {ω : |Xk(ω)−X(ω)| > ε}.

Our goal is to show that if k is large then Pr(Bk) < ε.

Let E be the set of ω ∈ Ω that belong to infinity many Bn’s, i.e.

E =
∞⋂
n=1

∞⋃
k=n

Bk.

By strong convergence, every ω ∈ A belongs to at most finitely many Bk’s. Namely, E

is disjoint from A, and so Pr(E) = 0

Consider the sequence of sets

Em =
m⋂
n=1

∞⋃
k=n

Bk ⊇ Bm.

Hence

E1 ⊇ E2 ⊇ · · · ⊇ E.

σ-additivity implies

Pr(E1 − E) =
∞∑
m=1

Pr(Em − Em+1) < 1.

So, if n is large then

Pr(En − E) < ε

since (by σ-additivity) it is the tail of a converging sum, which implies

Pr(Bn) ≤ Pr(En) < ε+ Pr(E) = ε.
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The other direction does not always hold. Let Y ∼ U [0, 1]. Define (Xn,k : n ∈ N, 1 ≤
k ≤ n) as follows. The variables Xn,k is the indicator of the event

{Y ∈ [k/n, (k + 1)/n]}.

Specifically Pr(Xn,k 6= 0) = 1/n→ 0 as (n, k)→∞. So this sequence weakly converges

to 0. But for every ω ∈ [0, 1], the sequence Xn,k(ω) does not even converge.

6.4 Strong law of large numbers

The weak law roughly says that the average of i.i.d. variables converges weakly to the

expectation. The strong law says that the same holds with strong convergence. As in

the proof of weak law, with a bound on the higher moments the proof is much simpler.

Theorem 50 (Strong law). Let X1, X2, . . . be i.i.d. so that EX4
1 <∞ and EX = µ. Let

Sn =
∑

i≤nXi/n. Then,

Pr( lim
n→∞

Sn 6= µ) = 0.

We will not prove the most general statement (due to Khintchine): The strong law

holds even under the condition that the expectation is finite.

The weak law does not tell us anything about normal numbers. The strong law tells

us that almost every number is normal.

To prove the strong law we need a criterion (as simple as possible) that guarantees

strong converges.

Lemma 51 (Borel-Cantelli). Let An be a sequence of events so that
∑

n Pr(An) < ∞.

Then,

Pr

(
∞⋂
n=1

∞⋃
m=n

Am

)
= 0.

In words, the probability measure of the set of ω’s that appear in infinitely many An’s is

zero.

Proof. For every k, by σ-additivity,

Pr

(
∞⋂
n=1

∞⋃
m=n

Am

)
≤ Pr

(
∞⋂
n=k

∞⋃
m=n

Am

)
≤

∞∑
n=k

Pr(An)→ 0,

as k →∞ since it is the tail of a converging sum.
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Corollary 52. If
∑

n Pr(|X −Xn| > ε) < ∞ for all ε > 0 then Xn strongly converges

to X.

The proof is left as an exercise. This is not an “iff” condition (exercise). The

assumption immediately implies weak convergence since the tail of a converging sum

converges to 0. But it actually says that this convergence to 0 is fast, which suffices to

prove strong convergence.

Proof of Theorem 50. Without loss of generality, µ = 0. A higher moment version of

Chebyshev says

Pr (|Sn| > ε) ≤ E(S4
n)

ε4
.

Let us estimate ES4
n. Using independence, and Cauchy-Schwartz,

n4ES4
n =

n∑
i,j,k,`=1

E(XiXjXkX`) =
n∑

i,j,k,`=1

E(Xi)E(Xj)E(Xk)E(X`)

≤ 10

(
n∑

i,j=1

E(X2
i )E(X2

j ) +
n∑
i=1

E(X4
i )

)
≤ Cn2.

So,

Pr (|Sn| > ε) ≤ C

ε4n2
.

Borel-Cantelli finishes the proof.

Summary. We have defined the moments of random variables, used them to get

probability estimates, and to prove convergence of two types.
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Chapter 7

More on random vectors

We now add some more properties of random vectors. In other words, we just discuss

interaction between several random variables in more detail.

7.1 Expectation

If X is an n dimensional random vector, and h : Rn → R is a measurable function then

h(X) is a random variable.

Theorem 53. If X is absolutely continuous then

Eh(X) =

∫
fX(x)h(x)dx.

If X is discrete then

Eh(X) =
∑
k

Pr(X = k)h(k).

These are integrals and sums in n dimensional space.

7.2 Conditioning

We consider the 2 dimensional case. Let (X, Y ) be a 2 dimensional random vector. We

would like to understand the distribution of Y conditioned on the value of X.

Discrete. When X is discrete this is relatively straightforward. For every k so that

Pr(X = k) > 0, we can consider the distribution of Y conditioned on the event {X = k}.
Thus, Pr(Y = `|X = k) is the probability function of Y conditioned on X = k. We also

have

FY |X(`|k) = Pr(Y ≤ `|X = k).
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A more elaborate definition is of conditional expectation.

E(Y |X = k) =
∑
`

Pr(Y = `|X = k)`.

This is a map k 7→ E(Y |X = k). In other words, we may think of E(Y |X) as a random

variable.

Absolutely continuous. When (X, Y ) has a density, then Pr(X = x) = 0 so we

can not condition on the event {X = x}. The way to handle this is to define a conditional

density. Instead of considering {X = x}, consider the event Eδ = {X ∈ [x, x+δ]}. Now,

if fX,Y is continuous then

FY |E(y|Eδ) =
FX,Y (x+ δ, y)− FX,Y (x, y)

FX(x+ δ)− FX(x)
→δ→0

∂
∂x
FX,Y (x, y)

fX(x)
.

This suggests the following definition. Assume (X, Y ) are absolutely continuous.

Then,

FY |X(y|x) =
∂
∂x
FX,Y (x, y)

fX(x)

and

fY |X(y|x) =
∂

∂y
FY |X(y|x) =

fX,Y (x, y)

fX(x)
.

This is similar to but different than definition of conditioning for events. The conditional

expectation is thus defined as

E(Y |X = x) =

∫
fY |X(y|x)ydy.

There are analogs of properties we already saw:

fY (y) =

∫
fY |X(y|x)f(x)dx

and

fY |X(y|x) =
fX|Y (x|y)fY (y)

fX(x)

if it is defined.

Example: Let X chosen with density fX(x) supported say on [0, 1]. Given X = x,

choose Y to be U [0, x]. That is, fY |X(y|x) is the density function of U [0, x]. We can now

compute fY ,EY using the formulas above.

Best estimator: We mentioned that E(Y ) can be thought of as the best a priori

estimate of Y . It is the number that minimized E(|Y − a|2).
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Similarly, E(Y |X = x) can be thought of as the best predictor of Y given that X = x.

This corresponds to cases when we are interested in the value of some quantity Y , that

we can not measure. The only thing we can measure is X. Given that we measured

X = x, our best estimate of the value of Y is E(Y |X = x).

7.2.1 Law of total expectation

Above we have defined E(Y |X). We mentioned that it is a random variable (it is a

measurable function of X). It turns out to be useful in many cases.

Theorem 54 (Law of total expectation). Let (X, Y ) be a random vector so that EY <

∞. Then,

E(Y ) = E(E(Y |X)).

Let us consider example from above, with Y ∼ U [0, X]. Since E(Y |X) = X/2 we

have

EY = EX/2 = (1/2)EX.

Proof. Prove for discrete.

E(E(Y |X)) =
∑
x

Pr(X = x)
∑
y

Pr(Y = y|X = x)y =
∑
x

∑
y

Pr(X = y,X = x)y

=
∑
y

Pr(Y = y)y = EY.

It will sometimes be useful to use the following. If (X, Y ) is discrete and h measurable

then

E(h(X)Y |X) = h(X)E(Y |X).

A similar statement holds in general (under some conditions on h that we do not specify

now).

Polya’s urn: Imagine an urn with 1 white ball and 1 black ball. We take a ball out of

the urn, and put 2 of the same color. So there are now 3 ball, but their color is random.

We keep on going for n more steps. Denote by Xk, 0 ≤ k ≤ n, the fraction of white

balls at time k (X0 = 1/2). At time k there are k + 2 balls. What is EXn?

EXn = E(E(Xn|Xn−1))

= E
(
Xn−1(Xn−1(n+ 1) + 1) + (1−Xn−1)Xn−1(n+ 1)

n+ 2

)
= EXn−1.

And by induction EXn = X0 = 1/2 for all n.
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7.3 Covariance

We have seen definition of covariance. It is a measure for the correlation between two

random variables. We have seen two way to compute. One is

cov(X, Y ) = E(XY )− E(X)E(Y ).

Theorem 55 (Properties of covariance).

1. cov(X,X) = V ar(X).

2. cov(X, Y ) = cov(Y,X).

3. Linearity: cov(X + Y, Z) = cov(X,Z) + cov(Y, Z) and cov(aX, Y ) = acov(X, Y )

for a ∈ R.

4. If X, Y are independent then cov(X, Y ) = 0. Shows that it is not inner product.

5. Cauchy-Schwartz: |cov(X, Y )|2 ≤ V ar(X)V ar(Y ).

Covariance is not a normalized measure. E.g. cov(X, Y ) = 1 is not universally

meaningful. To normalize is the (Pearson) correlation coefficient (mekadem mitam):

ρX,Y =
cov(X, Y )

σXσY
,

if the variances are non zero. It has similar properties to variance, except that it is nor-

malized to be between −1, 1. It measures the linear correlation between X, Y . Roughly,

the larger ρX,Y is the larger the linear correlation is. E.g. if ρX,Y = 1 then Y = aX + b

a.s. with a, b ∈ R.

Example: Let X be some random variable taking positive value, and let Y ∼
Exp(X). Is the covariance between X, Y positive or negative? Guess: The larger X,

the smaller Y typically is, so it should be non positive. Indeed,

E(XY ) = E(E(XY |X)) = E(XE(Y |X)) = E(X(1/X)) = 1,

and similarly

E(Y ) = E(1/X)

so

cov(X, Y ) = 1− E(X)E(1/X) ≤ 0

since E(1/X) ≥ 1/E(X) by convexity.
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7.4 Covariance matrix

We represent the covariances between the entries of X = (X1, . . . , Xn) in an n × n

matrix:

σX(i, j) = cov(Xi, Xj),

for i, j ∈ [n]. This matrix captures the correlation between the entries of X. It has the

following properties:

1. σX is symmetric. This implies that it has n real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn
with n orthogonal eigenvectors. That is, there is a real matrix U so that UUT = I

and σX = UΛUT with Λ diagonal so that Λ(i, i) = λi for all i.

2. σX(i, i) = V ar(Xi) for all i.

3. σX is positive semi-definite. That is, for every vector u we have 〈σXu, u〉 ≥ 0 with

the standard inner product over R or C. In other words, λ1 ≥ 0. Indeed, for every

u = (u1, . . . , un), consider Y =
∑

i uiXi,

0 ≤ V ar(Y ) = cov(Y, Y ) =
∑
i,j

uiujσX(i, j) = 〈uσX , u〉.

4. If M ∈ Rm×n and Y = MX then

σY = MσXM
T .

Indeed,

σY (i, j) = cov((MX)i, (MX)j) =
n∑

k,`=1

Mk,iM`,jσX(k, `).

7.5 Gaussians

We now define one of the most important distributions on real vectors. Let A ∈ Rn×n

be symmetric and positive definite, and let µ ∈ Rn. Define a density on Rn by

f(x) = fA,µ(x) = ce−
〈(x−µ)A,x−µ〉

2

with

c =

√
det(A)

(2π)n
> 0
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a normalization constant (perhaps discuss its value later). The integral is finite, since A

is positive definite (if there is a kernel or a negative eigenvalue the integral is infinite).

A random variable with this density is an n-dimensional Gaussian.

When A = I and µ = 0, it is a normal Gaussian with density

f(x) = ce−
∑n
i=1 x

2
i

2 .

It is radial symmetric. Its expectation is therefore 0. The density is a product density,

and hence the coordinates are independent (here we know c = (1/2π)n/2).

General properties: If X ∼ Gau(A, µ) then

1. EXi = µi for all i. In vector form EX = µ.

2. The maximum of the density is at µ. The contour shapes of the density are ellipses

centered at µ. In dimension 2, this is a bell shaped curve.

3. For every S ⊂ [n], denote by XS = (xi : i ∈ S). The vector XS is also Gaussian in

|S| dimensions.

To prove, integrate in R[n]−S and get density of similar form. In the integration,

there are cross terms involving xi and xj for i ∈ S and j 6∈ S. The integration is

done by completing to squares, which moves terms of the form ecx
2
i for i ∈ S out

side the integral. But overall we still have a density of the correct form. Below we

shall see what are A′, µ′ defining XS.

Example, for n = 2 and S = {1}:

fX1(x1) =

∫
ce−(a1,1x21+2a1,2x1x2+a2,2x22)/2dx2

= e−a1,1x
2
1ea

2
1,2x

2
1,1/a2,2

∫
ce−(

√
a2,2x2−a1,2x1/

√
a2,2)2dx2,

the right integral is 1, and the left function of x1 is of the correct form.

4. If M is n× n and invertible then Y = MX is also Gaussian.

By the chain rule for high dimensional transformations, since we are doing a linear

transformation:

fY (y) = cMfX(M−1x) = c′Me
− 〈A(M−1x−µ),M−1x−µ〉

2 = c′Me
− 〈(M

−1TAM−1)(x−Mµ),x−Mµ〉
2 ,

where cM , c
′
M are constants that depends on M .

5. If X is normal (A = I, µ = 0) and U is orthogonal then UX is also normal. In

words, a normal/standard Gaussian is invariant under rotations.
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6. The covariance matrix of X is

σX = A−1.

This gives a simple formula also for the behavior under affine transformations.

Proof: W.l.o.g. µ = 0. The matrix A is positive definite so it has a square root

A1/2, which is symmetric as well. The matrix of the vector A1/2X is therefore I

which means that it is normal. The covariance matrix of A1/2X is therefore I as

well (easy calculation). So,

σX = σA−1/2A1/2X = A−1/2IA−1/2.

Examples:

- If (X1, X2) are defined with I, µ = 0 and

(Y1, Y2) =
1√
2

(X1 +X2, X1 −X2)

then Y is also defined with I, µ. These are different vectors with the same distribution.

When drawing the rows of I in the plane we get to standard basis vector, that define a

circle. The rotation given by X 7→ Y leaves the circle as is.

- However, if X in the plane is defined by A =

(
2 0

0 1

)
then the rows of A define

an ellipse, and the same rotation also rotate the ellipse so that the entries of Y are no

longer independent.

You shall discuss conditioning in the exercise.

Summary. In this chapter we have discussed connections and measures that related

several random variables, how to condition one random variable on another, and an

important distribution on a collection of random variables (Gaussians).
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Chapter 8

Central limit theorem

The central limit theorem is similar to the laws of large numbers in that it provides a

universal behavior for system with many independent parts. However, the central limit

theorem is more accurate than the laws of large numbers. In the laws of large number,

the only promise we get is that a certain event happens with high/small probability.

The central limit theorem provide a quantitive estimate.

Theorem 56. Let (Xn) be a sequence of i.i.d. random variables with expectation µ and

variance σ2. Denote

Zn =

∑n
i=1(Xi − µ)

σ
√
n

.

Let Z ∼ N(0, 1). Then, for every t ∈ R,

lim
n→∞

Pr(Zn ≤ t) = Pr(Z ≤ t).

The normalization of Zn is so that EZn = 0 and V ar(Zn) = 1 for all n.

This theorem is one of the most important theorems in probability theory. It shows

the universality of the normal distribution (which also explains it name), and the reason

that the “bell shaped curve” appears in so many places.

Assume µ = 0 and σ = 1. The laws of large numbers say that Sn = 1
n

∑n
i=1Xi → 0.

The central limit theorem is much more accurate, it says what is roughly the rate of

convergence. Not only that Sn → 0, but Zn =
√
nSn which is much larger than Sn tends

to a limit Z.

The high level idea of the proof we shall see is very simple. We want to show that

FZn → FZ pointwise when n → ∞. We shall consider the characteristic function ϕZn ,

which can be thought of as the Fourier transform of FZn , and show that it converges to

ϕZ . This will be quite easy. Then we shall explain why if it works for ϕ it also work for

F . This will be non trivial.

59



60 CHAPTER 8. CENTRAL LIMIT THEOREM

The reason that Fourier transform is useful here is: Zn is a sum of n i.i.d. random

variables. In other words, it corresponds to the convolution of n functions. The Fourier

transform of convolution is just a product, which is much easier to understand. This

idea appear in many proof throughout mathematics.

Before actually proving the theorem, we need to build some theory.

8.1 Weak convergence of monotone functions

We have defined when a sequence of random variables converges to a limit. We now

consider the cumulative disturbution functions.

Definition 57. Let F, F1, F2, . . . be uniformly bounded monotone functions. The se-

quence (Fn) converges weakly to F if Fn(x)→ F (x) for every x in which F is continuous,

when n→∞. We denote this by Fn →w F when n→∞.

We are mostly interested in function that are right continuous (CDFs). The limit of

such functions is not necessarily right continuous; for example, Fn = 1[1/n,∞) pointwise

converges to 1(0,∞) but it weakly converges to 1[0,∞). In general, there are only countably

many points in which such a function is not continuous.

Note that when FXn →w FX , the function FX is right continuous, so the example

above shows that if Xn →w X then it does not hold that FXn → FX pointwise, but it

does hold that FXn →w FX .

A basic property of weak convergence is that the space of bounded monotone func-

tions is compact.

Theorem 58 (Helly’s selection). Let (Fn) be a sequence of monotone functions so that

|Fn(x)| ≤ 1 for all x, n. Then, there is a subsequence that weakly converges to a right

continuous non decreasing function F .

Even when Fn are CDF the limit is not necessarily such, e.g., if Fn = 1[n,∞) then

Fn → 0. The condition that guarantees that F corresponds to a random variable is

roughly F (−∞) = 0 and F (∞) = 1.

8.2 Three types of convergence

We can now add a 3rd type of convergence to our list. Before we formally define it, let

us recall the previous 2 definitions:

Strong. The sequence X1, X2, . . . over the same probability space converges strongly

to X if

Pr
(

lim
n→∞

Xn = X
)

= 1.
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This is the strongest version of convergence.

Weak (in probability). The sequence X1, X2, . . . over the same probability space

converges weakly to X if for every ε > 0,

lim
n→∞

Pr(|Xn −X| < ε) = 1.

In distribution. This is the weakest type of convergence we shall discuss.

Definition 59. A sequence of random variables X1, X2, . . . converges in distribution to

X if

FXn →w FX

when n→∞.

It is similar in spirit to weak convergence, but does not require the variables to leave

over the same space. This marks a key difference between convergence in distribution

and weak convergence, and makes the two notions incomparable somehow.

8.3 Characteristic function

Here we define the characteristic function ϕX of a random variable X. It is the Fourier

transform of it probability/density function.

Definition 60. The characteristic function ϕX of a random variable X is

ϕX(t) = EeitX .

Here i =
√
−1.

This is a complex integration, which can be thought of as 2 real integrals.

It is important to note that ϕX is always defined since |eitX | = 1 so the integral is

well defined. For every t, the value ϕX(t) is a point in the complex unit ball (it is the

average of points in on the unit circle).

Examples:

- If X ∼ U [{−1, 1}] then

ϕX(t) =
1

2

(
eit + e−it

)
= cos(t).

Draw in C.

- If X ∼ N(0, 1) then

ϕX(t) =

∫ ∞
−∞

1√
2π
e−x

2/2eitxdx = e−t
2/2

∫ ∞
−∞

1√
2π
e−(x−it)2/2dx = e−t

2/2.
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This is a line integral in the complex plane. The last equality uses Cauchy’s theorem,

which say that the integral of the holomorphic function e−z
2/2 in the closed path

(R, 0)→ (R,−it)→ (−R,−it)→ (−R, 0)→ (R, 0)

is zero. The part from (−R, 0) to (R, 0) is roughly 1, the part opposite is what we want,

and the two other parts are small (the modulus is e−R
2−s2 for 0 ≤ s ≤ t which is very

small). The details are left as exercise.

We now list important properties of ϕX :

1. ϕX(0) = 1 and |ϕX(t)| ≤ 1 for all t. The second property follows from convexity.

2. If X, Y are independent then

ϕX+Y (t) = Eeit(X+Y ) = EeitXEeitY = ϕX(t)ϕY (t).

This corresponds to that Fourier transform of convolution is product of transforms.

The other direction does not hold in general. Let X be a random variable so that

ϕX(t) = e−|t|. A random variable with this characteristic function is Cauchy; its

density is

fX(x) =
1

π(1 + x2)
.

The function ϕX(t) is the integral along the real line of a complex function g(t).

This follows from the residue theorem (the singularities of g are ±i). We shall not

prove. Thus,

ϕX+X(t) = ϕ2X(t) = ϕX(2t) = ϕX(t)ϕX(t).

3. ϕX is uniformly continuous on R. That is, for every ε > 0 there is δ > 0 so that

for all s, t if |s− t| < δ then |ϕX(t)−ϕX(s)| < ε. Indeed, let M = M(ε) be so that

Pr(|X| > M) < ε
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then

|ϕX(t)− ϕX(s)| =
∣∣EeitX − eisX∣∣

=
∣∣EeisX(ei(t−s)X − 1)

∣∣
≤ E|ei(t−s)X − 1|
= Pr(|X| > M)E(|ei(t−s)X − 1|

∣∣|X| > M)

+ Pr(|X| ≤M)E(|ei(t−s)X − 1|
∣∣|X| ≤M)

≤ 2 Pr(|X| > M) + E(|ei(t−s)X − 1|
∣∣|X| ≤M)

≤ 2ε+ ε,

as long as say δM < ε/10.

4. Its derivatives gives the moments: If E|X|k <∞ then ϕX is differentiable k times

at 0 and

ϕ
(k)
X (0) = ikEXk.

The proof shows that we can switch integration and derivative in this case. It hints

at that ϕX contains all information about X.

5. The map FX 7→ ϕX is one-to-one.

6. The most important property for us:

Theorem 61 (Levy continuity). Let X,X1, X2, . . . be a sequence of random vari-

ables. The following are equivalent:

(a) ϕXn → ϕX pointwise.

(b) Xn → X in distribution.

(c) (Xn) is tight, that is, for every ε > 0 there is M so that for all n,

Pr[|Xn| > M ] < ε.

8.4 Proof of central limit theorem

To prove the theorem, we therefore just need to prove:

Theorem 62. If X1, X2, . . . are i.i.d. with expectation 0 and variance 1 and

Zn =
n∑
j=1

Xj/
√
n
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then

ϕZn → ϕZ

pointwise, where Z ∼ N(0, 1).

Comment: If X1, X2, . . . are N(0, 1) then Zn is normal N(0, 1) as well, and so this

holds for every n. This can be thought of the property of normal variables that underlines

the central limit theorem.

Proof. Let us start with a proof sketch. I.i.d. implies that

ϕZn(t) =
n∏
j=1

ϕXj/
√
n(t) = (ϕX1/

√
n(t))n.

So we need to understand

ϕX1/
√
n(t) = EeiX1t/

√
n ≈ E1 + iX1t

√
n+ (iX1t/

√
n)2/2 = 1 + 0− t2/n.

Thus,

ϕZn(t) ≈ (1− t2/(2n))n → e−t
2/2,

as needed. We just need to make the ≈ accurate. For this we use the following (recall

that we do not control the 3rd moment): for every x ∈ R,

|eix − 1− ix| ≤ |x|2/2

and

|eix − 1− ix+ x2/2| ≤ |x|3/6.

We need to break ϕX/√n(t) to 2 parts, where X is say X1. Use the following two

estimates:∣∣∣eitX/√n − 1− iXt/
√
n+X2t2/(2n)

∣∣∣ ≤ ∣∣∣eitX/√n − 1− iXt/
√
n
∣∣∣+ |X|2|t|2/(2n)

≤ X2t2/n

and ∣∣∣eitX/√n − 1− iXt/
√
n+X2t2/(2n)

∣∣∣ ≤ |X|3|t|3/(6n3/2).

Consider the event A = {|X| > δ
√
n} for δ > 0 to be determined. Hence, a.s.∣∣∣eitX/√n − 1− iXt/

√
n+X2t2/(2n)

∣∣∣ ≤ 1AX
2t2/n+ 1Ac|X|3|t|3/(6n3/2).



8.5. DISCUSSION 65

Take expectation and get

E
∣∣∣eitX/√n − 1− iXt/

√
n+X2t2/(2n)

∣∣∣ ≤ (t2/n)E(1AX
2) + |t|3/(6n3/2)E(1Ac |X|3).

We would like to prove that for every ε > 0, if n is large then the expression above is at

most ε/n. (Plugging this to the proof sketch we started with completes the proof.)

Estimate the second term by:

≤ |t|3/(6n3/2)E(1Ac |X|2δ
√
n) ≤ δ|t|3/(6n) ≤ ε/n. (EX2 = 1, for small δ = δ(ε, t))

Estimate the first term as follows: When n→∞, the term

E(1AX
2)

is a tail of a converging sum, so for large enough n it is at most ε. For large n, the first

term is at most

≤ (t2/n)E(1AX
2) ≤ ε/n.

8.5 Discussion

The central limit theorem is one of the most useful mathematical theorems, and has

applications is all areas of science where statistics is applied.

The theorem it self does not guarantee the rate of convergence. This makes the

version we proved not so useful in formal applications, but luckily many scientific areas

do not care much about it (e.g. 30 experiments can be considered enough).

However, if we allow control of the 3rd moment, then we do get an estimate on the

rate of convergence.

Theorem 63 (Berry-Esseen). Let X1, X2, . . . be i.i.d. with expectation 0, variance 1 and

E|X|3 <∞. Let Zn = (X1 + . . .+Xn)/
√
n. Let Z ∼ N(0, 1). Then, for all x, n,

|FZn(x)− FZ(x)| < CE|X|3√
n

,

where C is a constant.

We shall not prove, but one can use Fourier analysis to prove as well.

There are also different methods of proof of the central limit theorem. We mention

one (Lindberg’s method). We want to show that (X1+X2+. . .+Xn)/
√
n is close to Z. As
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we mentioned, Z is distributed as (Y1+Y2+. . .+Yn)/
√
n where Y1, Y2, . . . are i.i.d.N(0, 1).

So we want to show that (X1 +X2 + . . .+Xn)/
√
n is close to (Y1 + Y2 + . . .+ Yn)/

√
n.

This can roughly be achieved as follows: We use a hybrid argument showing that

(X1 +X2 + . . .+Xi + Yi+1 + . . .+ Yn)/
√
n

is close to

(X1 +X2 + . . .+Xi +Xi+1 + Yi+2 + . . .+ Yn)/
√
n

for all i, and then sum the distances. There are also more methods (Stein’s, moments...).

One can use the CLT to estimate the size of certain sets. As you saw, the size of

A = {S ⊆ [n] : n/2 ≤ |S| ≤ n/2 + 3
√
n} is for large n close to

2n
∫ 6

0

1√
2π
e−x

2

dx.

Indeed, |A|/2n is the probability that

n∑
i=1

Xi ∈ [n/2, n/3 + 3
√
n]

or

Zn =
n∑
i=1

Xi − 1/2√
n/2

∈ [0, 6]

for X1, X2, . . . , Xn i.i.d. Ber(1/2).

Another simple example is the behavior of a one dimensional random walk. Let

W0,W1, . . . be defined as

W0 = 0

and

Wt =
t∑
i=1

Xi,

where X1, X2, . . . are i.i.d., each uniform in {−1, 1}. Wt is the position of a walker that

steps right or left independently at time t, when started at 0. In general, Wt ∈ [−t, t].
However, the central limit theorem tells us that in most cases |Wt| is roughly

√
t� t.

Specifically, we know that if t is large then

Pr(|Wt| <
√
t) > 0.9

∫ 1

−1

1√
2π
e−x

2/2dx ≈ 0.95.
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We can deduce that (
t

t/2

)
≥ 2t

10
√
t

for large t, since the middle binomial coefficient is maximum, and there are roughly 2
√
t

coefficients that sum to approximately 0.95 · 2t.
Lastly, let us talk about a property of the normal distribution that distinguishes

it. The principle of maximum entropy roughly says that the distribution that best

describes a situation is the one that maximizes the entropy under what is currently

known. We shall not define entropy, but without any prior knowledge the distribution

that maximizes the entropy among all distributions on [n] is the uniform distribution.

The notion of entropy for continuous random variables is captured by: If g is a density

then its entropy is ∫
g(x) ln(1/g(x))dx,

if it is defined. The observation is that among all densities with expectation 0 and

variance 1, the one that maximizes the entropy is that of N(0, 1), which we denote by

f . First, ∫
f(x) ln(1/f(x))dx = 1/2.

Second, indeed,∫
g(x) ln(1/g(x))dx− 1/2 =

∫
g(x) ln(1/g(x))dx−

∫
g(x) ln(1/f(x))dx

=

∫
g(x) ln(f(x)/g(x))dx

≤ ln

(∫
g(x)f(x)/g(x)dx

)
= 0. (ln is concave)

Summary. We have proved the central limit theorem. In the process, we discussed

various types of convergence, in various spaces. We used Fourier analysis, but there are

also other methods. We saw a few applications.
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