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Chapter 1

Preliminaries

1.1 Formalities

This is first course at Technion, so some introduction to system is needed.

There are 4 hours with me, and 2 hours with TA per week.

About 6 homework exercises.

Mathnet: An electronic system of exercises. One every week.

A midterm exam and a final exam.

The final grade is determined by a combination of all the above. Details in Moodle,

where all other material appears as well. Including Hebrew notes.

1.2 Goals

There are several goals to this course.

• Require basic understanding and ability to work with limits, derivatives, and in-

tegrals.

These notions are at the basis of the scientific revolution, and understanding them

is crucial to understating the world from a modern scientific perspective.

• Develop abstract thinking, and the ability to model a real life system in mathemat-

ical terms. Useful in understanding and establish predictions on the real world.

• Learn part of the language of mathematics.
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1.3 Numbers

Simplest numbers are natural number N = {0, 1, 2, . . .}. If we want to have subtraction

we get integers Z = {. . . ,−1, 0, 1, . . .}. If we want to have division we get rationals

Q = {a/b : a, b ∈ Z, b 6= 0}.
Mostly focus on real numbers R, which corresponds to number of line.

A subset A of R is denoted A ⊂ R. Can explicitly describe set e.g. {x ∈ R : x > 0}.
Infinity is denoted ∞. We think of it as a point at end of line to the right. There is

also −∞, which is to the left. A ray is [a,∞) = {x : a ≤ x}.
We know

N ⊂ Z ⊂ Q ⊂ R.

Obviously the left 2 containments are not equality. Is the third?

Claim 1.
√

2 6∈ Q.

This was a kept secret in the era of Pythagoras and his friends, and legend has it

that Hippasus discovered it and was executed to keep the secret.

Proof. Assume towards a contradiction that
√

2 = a
b

for a, b ∈ N and b 6= 0. Among all

options, choose a, b so that a+ b is minimum. Thus, 2 = a2

b2
or

a2 = 2b2.

This implies that a is even. So, a = 2c, and

4c2 = 2b2

which means that b is even. So, b = 2d and

√
2 =

c

d

but c+ d < a+ b, a contradiction.

The real numbers are the line. How do the other sets look on the line? Draw. The

rationals are dense.

Claim 2. If a < b in R then there is q ∈ Q so that a < q < b.

Proof. Let n be large enough so that n > 1
b−a > 0. Let k be the smallest integer so that

k
n
> a or k > an. Specifically, (k − 1) ≤ an and so

a <
k

n
=
k − 1

n
+

1

n
< a+ (b− a) = b.
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We may conclude that the irrationals R \Q are also dense in R.

1.4 Absolute value

Define a function from R to the non negative reals by |x| = x if x ≥ 0 and |x| = −x
otherwise. Draw graph. In words, |x| is the distance of x from 0, and in general |x− y|
is the distance between x, y.

Claim 3. For all x, y ∈ R:

1. |x+ y| ≤ |x|+ |y|.

2. ||x| − |y|| ≤ |x− y|.

Proof. For the first item, if the sign of x, y is the same, then there is equality, and if the

sign are different on l.h.s. there is cancellation.

The second item follows similarly, or w.l.o.g. assume |x| ≤ |y| and

|x| = |x− y + y| ≤ |x− y|+ |y|.

1.5 Inequlities

An inequality is an expression of the form A < B or A ≤ B, where A,B are real numbers

or expression taking real values. The former is a strong inequality, and the latter weak.

It signifies that A is smaller than B, and that B is larger than A.

Rules: Assume the inequality A < B holds.

• Given a number c > 0 then the inequality cA < cB also holds.

• The inequality −A > −B also holds.

• Given a second inequality C < D, the inequality A+ C < B +D also holds.

An example: Assume A < B < C and D < E < F . What can we say about B −E?

Well,

−F < −E < −D

and so

A−G < B − E < C −D.



8 CHAPTER 1. PRELIMINARIES

1.6 Sums

Given a sequence/list of number a1, a2, . . . , an, denote

n∑
i=1

ai = a1 + a2 + . . .+ an.

The sum of an arithmetic sequence ai = a+ i · d is

n∑
i=0

ai = (2a+ nd)
n+ 1

2
.

First term plus last term times number of summands over two. Proof: by induction.

The sums of a geometric sequence with q 6= 1

n∑
i=0

a · qn = a
qn+1 − 1

q − 1
.

Proof: multiply both sides by q − 1 and see what happens.

1.7 Subsets of real line

There are several types of subsets of R that we are interested in.

Intervals and rays. A closed interval [a, b] = {x : a ≤ x ≤ b} and an open interval

(a, b) = {x : a < x < b}. There are half open interval too.

Bounded sets. A set S ⊂ R is called bounded from above if there is x ∈ R so that

s ≤ x for all s ∈ S. The number x is called an upper bound on S.

Similarly, bounded from below.

A set is called bounded if both hold.

Examples: intervals are bounded, rays are bounded only from one side.

Every bounded set have many upper bounds. E.g. [0, 1] has upper bounds 1, 3, 6. Of

particular importance is the smallest possible upper bound. This number is called the

supremum: sup(S) is the smallest x that is an upper bound on S. E.g. sup([0, 1]) = 1

and sup([0, 1)) = 1. Similarly, define infimum as the largest lower bound on S.

Sometime the supremum of S is also inside S, like in the case of [0, 1]. In this case

it is called the maximum of S. Some sets do not have a maximum, like [0, 1). Similarly,

define minimum.

Note: every set that is bounded from above has a supremum, but only some of these

sets also have a maximum. Similarly, for infimum and minimum.
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Neighbourhoods. Another special type of sets is a neighbourhood of a points x ∈ R.

Given δ > 0, the δ-neighbourhood of x is the open interval (x−δ, x+δ). In other words,

it is the set of all points of distance smaller than δ from x. Hence the name. A third

way to write

{y ∈ R : |y − x| < δ}.

In general, a neighbourhood of x (without specifying δ) is an open interval containing

x, that is, a set of form (a, b) with a < x < b.

1.8 Functions

Given two sets A,B, a function f : A → B maps every element of A to an element of

B, that is, for all a ∈ A we have f(a) ∈ B.

There are several ways to define or describe a function:

Formulas. One way is by formulas f(x) = x2.

Known names. There are some known functions, like sin, cos, tan. We shall discuss

them in more detail later on.

By words. For example, f(x) is the largest integer that is smaller than x. This

function is usually denoted bxc.
With several domains. For example,

f(x) =

{
1 x ≥ 0,

0 x < 0.

We can have 3, 4 or infinitely many domains (e.g. f(x) = n if x ∈ [n, n + 1) which we

have seen above).

Comments: The set A is called the domain of f , and the set B the codomain.

Sometimes we need to deduce the domain. For example, the function f(x) =
√
x is

defined over A = {x : x ≥ 0}.
If f(x) = y then x is called the source of y and y is called the image of x.

More definitions:

- Image. The set

f(A) = {f(a) : a ∈ A}

is the image of f . For example, the image of f(x) = x2 is the positive reals. It is

sometime denoted as im(f).

- Graph. The graph of the function is the set of points {(x, f(x)) : x ∈ A}. This is

the usual notion that you draw. It is very helpful in visualising f .

- Onto. The function f : A→ B is onto if f(A) = B.

- One-to-one. The function f is one-to-one if f(x) 6= f(x′) for all x 6= x′ in A.
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- Invertible. A function f : A→ B is called invertible if there is a function g : B → A

so that g(f(a)) = a for all a ∈ A and f(g(b)) = b for all b ∈ B.

The function g is called the inverse of f and is denoted by f−1. Not to be confused

with 1/f .

Exercise: f is invertible iff f is one-to-one and onto.

- Monotone. A function f is (strongly) monotone increasing if f(x) < f(x′) for all

x < y in A. There is weak monotonicity (with ≤), and also monotone decreasing.

Exercise: if f is strongly monotone then f is one-to-one.

Question: does the opposite hold?

Answer: No – 2 separate regions.

- Even or odd. A function f is called even if f(x) = f(−x). Draw. It is called odd

if f(x) = −f(−x). Draw.

- Bounded. A function f : A→ B is bounded, if its image f(A) is bounded. Similarly,

bounded from above and below.

1.9 Elementary functions

Polynomials. A function of the form

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n =
n∑
i=0

aix
i

is called a polynomial. If an 6= 0 then the degree of f is n. Degree 0 is a constant, degree

1 is a linear function, degree 2 quadratic, and so forth.

A point x ∈ R is called a root of f if f(x) = 0. Finding roots of polynomials, and of

general functions, is of importance in applications.

Theorem 4. A polynomial of degree n has at most n roots.

The image of a polynomial of degree n is: If n is even, a half line. If n is odd, all of

R. Draw it.

Rational functions. If p(x), q(x) are polynomials so that q(x) 6= 0 then

f(x) =
p(x)

q(x)

is a rational function (like that rationals are rations of integers). The domain of f is

{x : q(x) 6= 0}.

If deg(q) = n then there are at most n such points.
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Exponentials. For a > 0, the function f : R→ R

f(x) = ax

is called an exponential.

Known rules:

ax+y = axay, (ax)y = axy, a−x =
1

ax

for all x, y ∈ R. This is well known for integers, and is also true for all reals (will not

prove here).

Always f(0) = 1. If a > 1 then f(x) is increasing, and if a < 1 it is decreasing. Two

graphs. The image of f is {x ∈ R : x > 0}.

Trigonometric. There are several such functions. Most notably sin(x), cos(x), tan(x).

In mathematics, usually angles are measured in radians, which is a number in [0, 2π).

Like an angle in [0, 360) in degrees. Draw a circle of radius one, and angles of

2π{1/8, 1/3, 1/4}.

Focus on x = 2π/10. What is cos, sin in the drawing? cos(x) is length of line close

to angle, and sin(x) is length of line in front of angle. Pythagoras’s theorem:

sin2(x) + cos2(x) = 1.

Symmetry:

sin(x) = cos((π/2)− x).

There are many more useful equalities.

This drawing defines the functions for x ∈ [0, 2π). What about other x ∈ R? The

same, just go around two or more time, or go in the other direction (negative). So,

sin(x) = sin(x+ 2π), cos(x) = cos(x+ 2π),

for all x. These functions are periodic. Draw. The image is [−1, 1].

Tangent is

tan(x) =
sin(x)

cos(x)
.

It is also periodic with period π. It is enough to draw in [−π/2, π/2]. The domain is

{x : cos(x) 6= 0} which is the set of all x 6= π
2

+ πz for some z ∈ Z. It goes from −∞ at

−π/2 to +∞ at π/2 through 0 at 0.
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1.10 Operations on functions

Arithmetic. Given f, g : A → B we can define several more functions from A to B,

by adding, subtracting, multiplying and dividing. What is domain of division?

Composition. Given f : A → B and g : B → C we can define a new function

g ◦ f : A→ C by

(g ◦ f)(a) = g(f(a)).

“Just follow the arrows in the diagram.”

Example: f(x) = 2x + 3 and g(x) = 1
x
. Note that g is not defined over f(R) but

only over a subset of it (the set {x : x 6= 0}). The function

(g ◦ f)(x) = g(2x+ 3) =
1

2x+ 3
.

Its domain is {x : x 6= −3/2}.
Conclusion: when composing functions we need to keep track of domains (the “weak-

est link” determines the domain).

Getting more elementary functions. In general, if f is elementary, also f−1 is ele-

mentary, and arithmetic operations on elementary functions give elementary functions.

Let us see some examples.

Roots. The function f(x) = x2 is not one-to-one so is not invertible. But if we restrict

it to the domain A = {x : x ≥ 0} then it becomes one-to-one, and onto B = {x : x ≥ 0}.
It therefore become invertible. Its inverse is f−1(x) =

√
x. Draw it. Discuss connection

of graph of f to graph of f−1.

Logarithms. The inverse of an exponential is called a logarithm. If f(x) = ax for

a 6= 1 positive then f is invertible (f(R) is the positive reals). The inverse f−1(x) is

defined over {x : x > 0} and is denoted loga(x). That is,

ax = y ⇔ x = loga(y).

From the rules of exponentials, we get rules for logs

loga(xy) = loga(x) + loga(y), loga(x
y) = y loga(x), loga(1/x) = − loga(x).

Draw it.

If a > 1 it is increasing and if a < 1 it is decreasing (like exponentials).

Trigonometric. There trigonometric functions also have inverses (when restricted to

the correct domains). Sometimes they are denoted with “arc” for example arccos(x) =
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cos−1(x), which is defined from [−1, 1] to say [0, π].

Summary. There are many elementary functions. We can get more by operations we

saw (arithmetic and inverse).
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Chapter 2

Limits

A limit is one of the fundamental topics that we shall discuss in this course. We will be

using the language of mathematics, but it will be helpful to keep in mind that we are

just setting the ground to understanding more complicated notions that are helpful in

analysing and understanding complex real life systems.

As in any mathematical discussion, our discussion consists of definitions, theorems,

and proofs. Definitions provide exact and formal meaning to words and symbols. The-

orems are statements concerning the definition that are always true. Proofs use the

definitions and the rules of logic to demonstrate the the theorems are indeed true.

2.1 At infinity

Let us start with a formal definition. Later we shall provide intuition and examples.

Definition 5 (Limit at infinity). Let f : R→ R. The f has a limit at +∞ and its value

is L ∈ R if for every ε > 0, there is x0 = x0(ε) ∈ R so that for all x > x0,

|f(x)− L| < ε.

The limit is denoted as

lim
x→∞

f(x) = L.

This definition also makes sense when f is defined in a neighbourhood of infinity, that

is, on a ray of the form [a,∞) for some a ∈ R.

Roughly, it says that if x is large then f(x) is close to L. Draw. It is important that

L is a real number (and not say ∞).

Examples:

15
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1.

lim
x→∞

1 = 1.

2.

lim
x→∞

1

x
= 0.

Let us prove from definition. Let ε > 0. Set x0 = 1/ε. For every x > x0,∣∣∣∣1x − 0

∣∣∣∣ =
1

x
<

1

x0
= ε.

3. Recall tan−1 : R→ (−π/2, π/2). What is

lim
x→∞

tan−1(x) =?.

Draw. tan of what is a large number? Of numbers that are close to π/2. Shall not

prove.

4.

lim
x→∞

2−x = 0.

Draw.

5.

lim
x→∞

sin(x)

x
=?

Draw. Comes closer and closer to zero, but from both sides, so it is 0. There are

two enveloping curves of 1/x and −1/x. Let us prove from definition. Let ε > 0.

Set x0 = 1/ε. For every x > x0, since | sin(x)| ≤ 1,∣∣∣∣sin(x)

x
− 0

∣∣∣∣ =

∣∣∣∣sin(x)

x

∣∣∣∣ ≤ ∣∣∣∣1x
∣∣∣∣ < 1

x0
= ε.

Non examples:

1. sin(x) does not have a limit at∞. There are infinitely many x’s so that sin(x) = 1,

and also so that sin(x) = −1.

2. x does not have a limit in R.

We have seen the definition, and several examples and non examples. Let us consider

a few properties of limits.
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2.2 Arithmetic

What is

lim
x→∞

1 +
1

x
+ 2−x?

It is more convenient to consider each term separately and then compose the answers,

using simple arithmetic. The guess would be

1 + 0 + 0 = 1.

To do so, we need to know when it is okay.

Theorem 6. Let f1, f2 : R → R. Assume that (specifically the two limits exist and are

finite)

lim
x→∞

f1(x) = L1, lim
x→∞

f2(x) = L2.

Then,

lim
x→∞

f1(x) + f2(x) = L1 + L2, lim
x→∞

f1(x)− f2(x) = L1 − L2, lim
x→∞

f1(x) · f2(x) = L1 · L2.

If L2 6= 0 then

lim
x→∞

f1(x)

f2(x)
=
L1

L2

.

We shall not prove the theorem here, but keep it in mind since it will be useful for

you. When you apply a theorem, remember to verify that you are allowed to.

Example:

lim
x→∞

x

x+ 1
=?

Why? We can use the definition of a limit, or use known limits. The second one is

usually easier. To do so, write

x

x+ 1
= 1− 1

x+ 1
,

and recall that the limit of 1/(x+ 1) when x→∞ is 0.

2.3 Basic properties

We shall present several basic properties of limits. They have two other objectives.

One is the deepen the understanding of the notion of limit. Another is learn how to

mathematically investigate a concept.
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Claim 7. If f : R→ R has a limit at infinity, then there x0, b ∈ R so that for all x > x0,

|f(x)| ≤ b.

In other words, if f has a limit at infinity then the image of f on [x0,∞) is bounded

for some x0.

Proof. Denote by L the limit of f when x → ∞, which exists by assumption. Choose

ε = 1. Since f has limit, there is x0 so that |f(x)−L| < 1 for all x > x0. Finally, choose

b = |L|+ 1. Indeed, for all x > x0,

|f(x)| = |f(x)− L+ L| ≤ |f(x)− L|+ |L| ≤ 1 + |L| = b.

Claim 8. If limx→∞ f(x) = L > 0 then there is x0 ∈ R so that for all x > x0,

f(x) > 0.

Proof. Choose ε = L/2. There is x0 so that for all x > x0,

|f(x)− L| ≤ L/2.

That is, for x > x0,

−L/2 ≤ f(x)− L ≤ L/2

and so (just left hand side)

0 < L/2 ≤ f(x).

Exercise 9. The limit of f at infinity is 0 if and only if the limit of |f | at infinity is 0.

Exercise 10. Let f, g : R → R. Assume that there is x0 ∈ R so that for all x > x0 we

have f(x) ≥ g(x). Also assume that f, g have a limit at infinity. Then,

lim
x→∞

f(x) ≥ lim
x→∞

g(x).

Comment: even if f(x) > g(x) for all x, in the limits only ≥ holds. For example,

g(x) = 0 and f(x) = 1/x.

Claim 11 (Sandwich). Let f, g, h : R→ R. Assume that there is x0 ∈ R so that for all

x > x0 we have

f(x) ≤ g(x) ≤ h(x).
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Also assume

lim
x→∞

f(x) = lim
x→∞

h(x) = L.

Then,

lim
x→∞

g(x) = L

as well.

This claim may be useful in computing a limit. For example, for x > 0,

0 ≤ 1

x+
√
x
≤ 1

x
.

Proof. By previous exercise,

L = lim
x→∞

f(x) ≤ lim
x→∞

g(x) ≤ lim
x→∞

h(x) = L.

Another variant of the arithmetic rules:

Claim 12. Let f, g be two functions that are defined on a ray [a,∞). Assume limx→∞ f(x) =

0 and that g is bounded. Then,

lim
x→∞

f(x) · g(x) = 0.

This following holds even when g does not have a limit.

Proof. Follows from sandwich, since there is M ∈ R so that −M ≤ g(x) ≤M for all x,

so

−M |f(x)| ≤ g(x) ≤M |f(x)|.

Also use that |f | tends to 0.

Comment: The discussion above can be made on limits at −∞ by considering −f
instead of f .

2.4 Limit at a point

So far we have discussed limits at infinity. We shall move to discussing limits at a point

x ∈ R.
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Definition 13. The function f : A → B has a limit L at1 a ∈ A if for every ε > 0,

there is δ > 0 so that for all x ∈ A so that2 0 < |x− a| < δ we have |f(x)− L| < ε.

A neighbourhood of infinity [x0,∞) is replaced by a neighbourhood of a point. The

number x0 is replaced by δ. Draw.

Comment: There is an important distinction between the case f is defined at a and

not. We shall not discuss it in detail.

Examples:

1.

lim
x→1

x = 1.

2.

lim
x→0

x

x2 + 1
=

0

1
= 0.

3.

lim
x→0

x

x
= 1.

The function is not defined at 0.

Non examples:

1. limx→0
1
x

is not defined.

2. Let f be the step function (i.e. 0 on negative number and 1 otherwise). Then

limx→0 f(x) is not defined. Intuitively, if we approach from right we get 1 and

from left we get 0. We shall discuss it in more detail soon.

Comment: The claims we stated for limits at infinity holds also at a point (e.g.

arithmetic, boundedness, positivity, bounded times tending to zero).

One more example: The limit of sin(1/x) does not exist at 0. Draw. However,

sin(1/x) is bounded so that limit of x sin(1/x) at 0 exists and it is 0.

Puncturing: Sometimes f is not even defined at a, but the limit is still defined.

This happens when f is defined in a punctured neighbourhood of a. Recall that a

neighbourhood I of a is an open interval containing a. A punctured neighbourhood J

of a is defined as J = I \ {a}. We just remove a from I.

1We shall always assume that A contains a punctured open neighbourhood of a, but we shall not
mention it too often.

2Note that x 6= a is also assumed.



2.5. ONE SIDED LIMITS 21

2.5 One sided limits

The limit of f at x is L means that when we approach x the value of f becomes closer

and closer to L. What if we approach x just from the left or right? This may give a

different behaviour. For example, the step function does not have a limit at 0. But we

can still make sense of approaching 0 from say the left.

Definition 14. The function f : A→ B has a limit from the left L at a ∈ A if for every

ε > 0, there is δ > 0 so that for all x ∈ A so that a− δ < x < a we have |f(x)−L| < ε.

This limit is denoted

lim
x→a−

f(x) = L.

That is y is close to x but to its left.

Example: Let f be the step function from above. Observe f(0) = 1. But for all

x < 0 we have f(x) = 0, so

lim
x→0−

f(x) = 0.

From right: We can similarly define a limit from the right. If f is the step function

then

lim
x→0+

f(x) = 1.

Claim 15. Let f : A → B and a ∈ A. The limit of f at a exists if and only if the two

one sides limits exist and they are equal.

Namely, if one of the one sided limits does not exists or they exist but not equal then

the limit does not exist. This is a way for proving that a certain limit does not exist.

Intuitively, if the two one sided limits exists, but the limit does not exist then the

graph of the function has a “jump” at the point.

As in the case of limit, there is a one sided analog of the claims we have stated.

2.6 Generalized limits

We saw some examples where there is no limit, but we have an intuition that the limit

is say ∞. Such a case is called a generalized limit.

Definition 16. The function f : A → B has a generlized limits ∞ at a if for every

M > 0, there is δ > 0 so that for all x ∈ A so that x 6= a and |x − a| < δ we have

f(x) > M .

Example: 1/x at 0, or x at ∞.

Important comment: The arithmetic and other claims do not hold in general for

generalised limits.

Can similarly define a generalised limit to be −∞.
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2.7 Summary

We defined limits at ±∞, at a point. One sides limits too. All of these have many

properties: arithmetic, comparsion, sandwich,... We have defined generalised limits,

and these are more subtle.



Chapter 3

Sequences

So far we have discussed functions and their limits. We now move to talk about sequences

of numbers, which are an ordered list of numbers.

Definition 17. A sequence (an)∞n=1 is a list a1, a2, a3, . . . of real numbers. It is sometimes

denoted as {an} as well.

As functions, they can be written in several ways.

Formula. an = n2 means 1, 4, 9, 16, . . .

Recursion. a0 = 0, a1 = 1, an+2 = an+1 + an for all n ≥ 0. Which is the Fibonacci

sequence 0, 1, 1, 2, 3, 5, 8, . . .

3.1 Limits

Functions have limits at points (or infinity). Sequences just have a limit, which corre-

sponds to infinity for functions.

Definition 18. A sequence (an) has a limit L ∈ R at infinity if for every ε > 0 there is

x0 ∈ R so that for all n > N ,

|an − L| < ε.

It is denote limn→∞ an.

Examples: 1, 1/n, 2−n.

Finbonacci an, and an+1/an → (1 +
√

5)/2. Shall later understand better.

If a sequence has a limit we say it converges. Otherwise, we say it diverges.

All statement about limits of functions at infinity hold for sequences as well:

Claim 19. If (an) is given as an = f(n) for some f : R→ R and limx→∞ f(x) = L then

limn→∞ f(n) = L as well.

23
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Comment: if changing (an) in finitely many places then we do not change the limit

nor its existence.

The arithmetic of limits holds in this case too. For example, if an → a and bn → b 6= 0

then an/bn → a/b.

Example: limn→∞
n3+2n+4

5n3+10n2−1 = 1/5.

The comparison principle holds in this case too. If an ≥ bn starting from some N

and both converge then lim an ≥ lim bn. Sandwich principle holds too.

There are several more statements.

We mention a few more statement, mostly without a proof.

Claim 20. If an → a then |an| → |a|.

Proof. If a = 0 then we have seen it. If a > 0 then we saw that an > 0 for all n > n0.

So |an| = an for all n > n0. If a < 0 then |an| = −an which means |an| = −an → −a =

|a|.

Claim 21. If an → a > 0 then
√
an →

√
a.

Claim 22. an = n1/n → 1.

Examples: 101/10 = 1.25..., 1001/100 = 1.047..., 10001/1000 = 1.006....

Proof. Let us use sandwich. Write a = 1 + bn. That is, n1/n = 1 + bn or

n = (1 + bn)n = 1 +

(
n

1

)
bn +

(
n

2

)
b2n + . . . .

We want to show that bn is small. Since by above n >
(
n
2

)
b2n,

0 ≤ bn <

√
2

n− 1
→ 0.

Corollary 23. For all c > 0, we have c1/n → 1.

Proof. Sandwich: 1 ≤ c1/n ≤ n1/n for all n ≥ c.

Generalized limits.

Definition 24. We say that the (generalized) limit of an is ∞ if for every M ∈ R there

is x0 ∈ R so that an > M for all n > x0.

Claim 25. If an > 0 for all n then an → 0 iff 1/an →∞.

Some positivity assumption should be made: sin(n)/n tends to 0 but n/ sin(n) does

not tend to ∞.
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3.2 Montone bounded sequences

Definition 26. A sequence is monotone (weakly) increasing if an+1 ≥ an for all n.

Decreasing if an+1 ≤ an. If one of the two holds, we call it monotone.

Definition 27. A sequence (an) is bounded if there is M ∈ R so that |an| ≤ M for all

n ≥ 1.

A key property we shall use is the following:

Theorem 28. If (an) is monotone and bounded then it converges.

For example, if there is M ∈ R so that

a1 ≤ a2 ≤ a3 ≤ . . . ≤M

then (an) converges.

Explanation. We shall not prove it here but the intuition is that an keeps going up, but

it is bounded so it can not go up too much, so it must be stuck at some point.

What is the limit? It is the supremum of the set {an}.

This property is very useful – it actually gives us a way to compute a limit.

Example: Define a1 = 1 and an+1 =
√

1 + an. So it is 1,
√

2,
√

1 +
√

2, . . . . Does it

converge? What is the limit? Perhaps surprisingly it is (1 +
√

5)/2, again.

We will see that it is bounded and monotone, and hence converges. Then we shall

see the limit.

Claim 29. an ≤ an+1 for all n ≥ 1.

Proof. By induction. Base: n = 1 is true. Step: By induction,

an+1 =
√

1 + an ≥
√

1 + an−1 = an.

Claim 30. an ≤ 2 for all n ≥ 1.

Proof. By induction. Base holds. Step:

an+1 =
√

1 + an ≤
√

1 + 2 ≤ 2.
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Corollary 31. The sequence (an) converges. Denote by a its limit. Thus

a = lim
n→∞

an+1 = lim
n→∞

√
an + 1.

By previous properties, a =
√
a+ 1 or

a2 − a− 1 = 0⇒ a =
1±
√

5

2
.

Note that a > 0 since the sequence is positive. So we found another sequence with the

golden number as its limit.

Do not use arithmetics without first verifying that the limit exists.

3.2.1 e

Another important example of a sequence is an = (1 + 1/n)n. We will show as before

that it has a limit.

Claim 32. (an) is monotone increasing and bounded.

Proof. Bounded:

an =
n∑
k=0

(1/n)n
(
n

k

)
≤

n∑
k=0

1/k! ≤ 1 + 1 + 1/2 + 1/4 + 1/8 + . . . = 3.

Monotone: Shall use the arithmetic-mean-geometric-mean inequality: For all m ∈ N
and b1, . . . , bm,

(b1b2 . . . bm)1/m ≤ (b1 + . . .+ bm)/m.

For example, (2 · 3)1/2 =
√

6 < (2 + 3)/2 = 2.5. Now,

(1 · (1 + 1/n)n)1/(n+1) ≤ 1

n+ 1
(1 + n(1 + 1/n)) = 1 + 1/(n+ 1).

Raising both sides to power n+ 1 completes the proof.

So we know this sequence converges. What is a limit? It has a special symbol

lim
n→∞

(1 + 1/n)n = e ≈ 2.718281828459045235360.

This is a very useful number which appears in many places in nature. Perhaps we

shall understand this better later on.
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Comments: For every λ ∈ R,

lim
n→∞

(1 + λ/n)n = eλ

and similarly

lim
x→0

(1 + λx)1/x = eλ.

We shall not prove these now.

3.2.2 A converging sum

Let

an =
n∑
i=1

1

i2
.

Write a few elements for example. This is clearly monotone and positive. Why is it

bounded? Well, we can use a telescopic sum:

n∑
i=1

1

i2
= 1 +

n∑
i=2

1

i2
≤ 1 +

n∑
i=2

1

i(i− 1)

= 1 +
n∑
i=2

1

i− 1
− 1

i
= 1 + 1− 1

n
≤ 2.

So this infinite sum converges. What is limit? This is a nontrivial question, and it turns

out to be π2/6.

3.3 Subsequences

Let us see some example of subsequences.

The even numbers are a subsequence of the integers.

an = 2−n is a subsequence of bn = 1/n.

There are 2 main reasons to consider subsequences.

1. If we find two subsequences that converge to different limits then we know that

the sequence does not converge. For example, 0, 1, 0, 1, 0, 1, 0, . . ..

Claim 33. If (an) converges to L then every subsequence of (an) converges to L, and

vice versa.

2. It may be that some subsequence converges even though the sequence does not

converge. For example, 0, 1, 0, 1, 0, 1, 0, . . ..

The general phenomenon is relevant to bounded sequences.
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Theorem 34 (Bolzano-Weirstrass). Let (an) be a bounded sequence. Then it has a

subsequence that converges to a limit.

Explanation. We shall not formally prove, but give a brief explanation. It will help if

you draw the following. So, there is M ∈ R so that |an| ≤M for all n, or an ∈ [−M,M ]

for all n. So either there are infinitely many n so that an ∈ [−M, 0] or in [0,M ] (or

in both). Assume that the latter holds. So, either there are infinitely many n so that

an ∈ [0,M/2] or in [M/2,M ]. We can keep on going and find for every ε an interval of

length ε in which there are infinitely elements of the sequence. This gives a converging

subsequence – all elements of it become closer and closer.
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Continuity

We are now ready to introduce the first application of the relative abstract notion of

“limit.” Our goal will be to define the notion of a continuous function. This roughly

corresponds to functions whose graph is a continuous line. But our goal is to provide a

formal definition. This may be thought of as one of the first motivations for considering

the notion of a limit.

How would you define this notion? A function f is continuous if the value f(x) is

close to f(a) if x is close to a.

Definition 35. A function f : R→ R is continuous at the point a ∈ R if1

lim
x→a

f(x) = f(a).

Examples:

The function f(x) = x is continuous in every a ∈ R since limx→a x = a.

The function sin(x) is continuous:

| sin(x)− sin(a)| = 2

∣∣∣∣sin x− a2
cos

x+ a

2

∣∣∣∣ ≤ 2

∣∣∣∣sin x− a2

∣∣∣∣ ≤ 2

∣∣∣∣x− a2

∣∣∣∣ = |x− a|.

A non example. A step function at 0.

4.1 One sided

As in case of limits, we can define one sided continuity.

1We had some discussion related to the meaning of “limit” when f is defined at a. Here we take
only x 6= a in definition of limit, that is, for every ε > 0 there is δ > 0 so that if 0 < |x − a| < δ then
|f(x)− f(a)| < ε.

29
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Definition 36. The function f is right continuous at a if

lim
x→a+

f(x) = f(a).

Similarly, define left continuous.

For example, the 0/1 function defined as f(x) = 1 iff x ≥ 0 is right continuous but

not left.

Claim 37. f is continuous iff it is continuous from both sides.

4.2 Properties

As for limits, we can generate new functions from two given functions.

Proposition 38 (arithmetic). Let f, g be two functions that are continuous at a. Then

f + g, f · g are continuous at a. If g(a) 6= 0 then f/g is continuous at a as well.

What about composition f ◦ g? They should both be continuous, but where? g at

a, and f at g(a).

Proposition 39 (composition). Let g be continuous at a and f be continuous at g(a)

then f ◦ g is continuous at a.

What about inverses? If a line is continuous, then the line of inverse it too...

Claim 40 (inverse). Let f be strictly monotone and continuous at every point a domain

A. Then f−1 is also continuous.

We shall not prove these claims now, but the proofs follow from the known properties

of limits.

As a conclusion we learn that

Theorem 41. An elementary function f is continuous in all the points in which it is

defined.

4.3 Classification

There are 3 types of points of discontinuity. We go from simpler to most complicated.

Removable (slika). The function f has a removable discontinuity at a if the limit

limx→a f(x) = L exists but f(a) 6= L (here we insist that x 6= a in the definition of

limit).
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For example, f that is 0 everywhere except at 0. (We had some discussion of limit

at 0 of this function. Here we say that the limit exists.)

Jump (kfitza). The function f has a jump discontinuity at a if the two sided limits

limx→a+ f(x) and limx→a− f(x) exist but are not equal.

For example, f is the step function at 0.

Essential (ikarit). The function f has an essential discontinuity at a if at least one

of the sided limits limx→a+ f(x) and limx→a− f(x) does not exist.

For example, sin(1/x) at 0.

4.4 Intermediate point theorem

Here we describe a simple and very useful property of continuous function. The property

is very intuitive, but we shall not provide a formal proof. Roughly, it says that a line

from A to B must cross the middle between A,B. Draw.

Theorem 42. Let f : [a, b] be a continuous function on [a, b]. For every y that is between

f(a) and f(b), there is x ∈ [a, b] so that f(x) = y.

Explanation. Assume for example f(a) = −1, f(b) = 1 and z = 0. We can find a

sequence of intervals [a, b], [a1, b1], [a2, b2] so that

• |bn − an| → 0.

• f(bn) > 0 and f(an) < 0.

The second property using continuity say that |f(bn) − f(an)| → 0. The first property

implies that both go to 0.

There are many applications of this theorem. Here is one.

Claim 43. If p is a polynomial of odd degree then there it has a root, that is, there is x

so that p(x) = 0.

Proof. Let c be the leading coefficient of p. Assume that c > 0, the proof in the other

case is similar. We know that if a > 0 is very large then p(a) > 0 and p(−a) < 0. So

there is x ∈ [−a, a] so that p(x) = 0.

4.5 Maximum and minimum

Another important property of continuous functions is that they attain a maximum and

minimum on closed intervals.
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Theorem 44 (Weirstrass). Let f : [a, b] → R be a continuous function on [a, b]. Then

f is bounded and attains a maximum and a minimum.

We shall not prove the theorem here. But we comment that it is important that the

interval is closed. For example, 1/x is continuous in (0, 1] but not bounded.

Here is a application of this theorem.

Claim 45. If f : [a, b]→ R is continuos then the image f([a, b]) of f is an interval.

The image is not necessarily [f(a), f(b)]!

Explanation. Maximum and minimum are attained. Everything between them is at-

tained due to intermediate point theorem.
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Derivatives

We have defined and studied one basic aspect of functions: continuity. We now move

to studying a more complicated notion. The introduction of this notion by Newton and

Leibniz is one of the reasons for the scientific revolution.

The basic idea is that say we are looking at a particle moving in space, and we want

to measure its speed. Let us say for simplicity the particle is a car on a road. How can

we measure the speed? We can let it go from Tel Aviv to Haifa and estimate

speed =
distance from Tel Aviv to Haifa

time it took the car
.

But this is only an average speed. How can we measure the speed of a car at a given

moment? We take shorter and shorter parts of the road, and do the same calculation.

In other words, we take a limit.

Definition 46. Let f : R→ R. The derivative of f at a ∈ R is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

if the limit exists.

The derivative of x2 at 1 is

lim
x→1

x2 − 12

x− 1
= lim

x→1
x+ 1 = 2.

33
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In general, the derivative of xn at a is (the first step is useful in many cases)

lim
x→a

xn − an

x− a
= lim

h→0

(a+ h)n − an

h

= lim
h→0

an + an−1
(
n
1

)
h+ an−2

(
n
2

)
h2 + . . .− an

h

= lim
h→0

an−1
(
n

1

)
+ an−2

(
n

2

)
h+ . . . = nan−1.

This is a formula you all know.

There is a different notation: Think of f(x)− f(a) as a small change in f , which is

denoted df (d from difference). Think of x− a as a small change in x. The notation is

f ′ =
df

dx
.

This is not division.

Geometric interpretation. Draw f in the neighbourhood of a. The height is f(x) −
f(a) and the width is x − a. The limit is the slope of the tangent line to f at a. A

tangent is not necessarily on one side of the graph: x3 at 0.

More examples. Derivative of sin:

lim
h→0

sin(a+ h)− sin(a)

h
= lim

h→0

2 sin(a+h−a
2

) cos(a+h+a
2

)

h

= lim
h→0

2 sin(h
2
)

h
cos(

2a+ h

2
) = 1 · cos(a).

5.0.1 Differentiability and continuity

Claim 47. If f has a derivative at a then f is continuous at a.

Proof.

lim
x→a

f(x)− f(a) = lim
x→a

f(x)− f(a)

x− a
(x− a) = f ′(a) · 0 = 0.

The other direction is not true. For example, |x| at 0:

lim
h→0+

|h|
h

= 1
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and

lim
h→0−

|h|
h

= −1.

5.1 Rules

Theorem 48. Assume f, g are differentiable at a.

scalar. For every c ∈ R, we have (cf)′(a) = c(f ′(a)).

additivity. (f + g)′(a) = f ′(a) + g′(a).

Leibniz. (f · g)′(a) = f ′(a)g(a) + f(a)g′(a).

Explanation. The first 2 items follow from definition of limit. Item 3:

lim
x→a

f(x)g(x)− f(a)g(a)

x− a
= lim

x→a

f(x)g(x)− f(a)g(x) + f(a)g(x)− f(a)g(a)

x− a

= lim
x→a

f(x)− f(a)

x− a
g(x) + f(a)

g(x)− g(a)

x− a
= f ′(a)g(a) + f(a)g′(a).

Example: (x3)′ = (x · x2)′ = x · 2x+ x2 = 3x2.

Claim 49. If g is differentiable at a and f is differentiable at g(a) then

(f ◦ g)′(a) = f ′(g(a)) · g′(a).

Explanation. Shall not provide full proof, but explanation:

f(g(a))− f(g(x))

x− a
=
f(g(a))− f(g(x))

g(x)− g(a)
· g(a)− g(x)

x− a
.

Example: sin(x2) at 3. The derivative is cos(x2) · 2x and at 3 it is 6 cos(9).

Corollary 50. If g(a) 6= 0 then

(f/g)′(a) =
f ′(a)g(a)− f(a)g′(a)

g2(a)
.
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Proof. (
f

g

)′
(a) =

(
f · 1

g

)′
(a)

= f ′(a)

(
1

g

)
(a) + f(a)

(
1

g

)′
(a)

=
f ′(a)

g(a)
− f(a)

1

g2(a)
g′(a)

=
f ′(a)g(a)− f(a)g′(a)

g2(a)
.

Here we used that for all n ≥ 1, (1/xn)′ = (x−n)′ = nx−n−1 for all x. We shall prove

below.

It also holds that ln′(x) = 1/x for x > 0. Explanation:

ln(a+ h)− ln(a)

h
= ln

(
a+ h

a

)h
= ln

(
1 +

h

a

)h
→h→0 ln e1/a = 1/a.

How to use ln for 1/xn? Let b > 0 and let f(x) = xb for x > 0. Write

g(x) := ln(f(x)) = b ln(x).

On one hand

g′(x) = b
1

x

and on other hand

g′(x) =
1

f(x)
f ′(x) =

1

xb
f ′(x).

So,

f ′(x) = bxb−1.

Last example:

Claim 51. If f is differentiable at a and invertible at a neighborhood of a, and g = f−1

is its inverse then

g′(x) =
1

f ′(g(x))
.

Recall that inverse is just flipping, which shows that angle of tangent is inverted.

Explanation. (g ◦f)(x) = x so by composition rule f ′(g(x))g′(x) = 1. (We did not prove

that g is differentiable.)
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Example: f(x) = sin−1(x). Thus sin(f(x)) = x and cos(f(x))f ′(x) = 1 or

f ′(x) =
1

cos(sin−1(x))
=

1√
1− sin2(sin−1(x))

=
1√

1− x2
.

5.2 Higher order

If we take one derivative, why not take more?

Definition 52. If f has a derivative f ′ and f ′ is differentiable then f (2) = f ′′. Similarly,

define f (n) as the n’th derivative of f , if it exists.

These also have rules: If f, g have n derivatives then

(f + g)(n) = f (n) + g(n)

and

(fg)(2) = (f (1)g + fg(1))(1) = f (2)g + f (1)g(1) + f (1)g(1) + fg(2) = f (2)g + 2f (1)g(1) + fg(2).

This is similar to the binomial theorem, and indeed

(fg)(n) =
n∑
k=0

(
n

k

)
f (k)g(n−k).

5.3 Summary

So far we provided the definition of derivatives and described the rules that derivatives

follow. You can think of it as the instructions that we get when buying an electric

appliance. What we can and can not do with it. We shall now start the deeper and

perhaps more interesting part of this study. How to apply derivatives, according to the

rules we discussed.

5.4 Finding extreme points

As we discussed, finding extreme points of function is a really important and useful task.

Derivatives are very helpful in doing so.

Definition 53. A point a is a local maximum of f if there is a neighborhood I of a so

that for all x ∈ I we have f(x) ≤ f(a). Can similarly define a local minimum. If a is

either minimum or maximum then it is an extreme point (not necessarily global ones).
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Theorem 54 (Fermat). If f is differntiable in an open interval I and x ∈ I is an

extreme point then f ′(a) = 0.

Proof. Consider the case that a is a local maximum. Then for every x that is close

enough to a we have

f(x) ≤ f(a).

So, if x > a then (f(x)− f(a))/(x− a) ≤ 0 and if x < a then (f(x)− f(a))/(x− a) ≥ 0.

So the right limit is non positive and the left limit is non negative. But both are equal

since the limit exists. So it must be equal to 0.

Example: f(x) = x3−x+5 in (−10, 10). Then f ′(x) = 3x2+1. So the extreme points

are ± 1√
3
. Now f(10) is large positive, and f(−10) is large negative. And f(−1/

√
3) > 0.

So it should be a local maximum. The other point is a local minimum. There is a root

for f between −10 and −1/
√

3.

5.5 Rolle’s theorem

This is a variant of the intermediate value theorem, with respect to derivatives. It says

that if we draw the graph of a smooth function starting and ending at the same height

then we there must be a point in which the tangent is parallel to axis. This is a global

to local deduction.

Theorem 55 (Rolle). If f is continuous in [a, b] and differentiable in (a, b) and f(a) =

f(b) then there is x ∈ (a, b) so that f ′(x) = 0.

Proof. We know that f gets a minimum and a maximum. If both are equal then (?) the

function is constant and f ′ is zero. If not, then there is an extreme point in (a, b) and

there the derivative is zero (Fermat).

Application/exercise: If c > 0 then the number of solutions to

x3 + cx+ d = 0

is exactly 1. We saw that there is at least one (since degree is odd). Assume a < b are

two solutions (towards a contradiction). Then by Rolle’s theorem since the function is

differentiable everywhere there is x ∈ (a, b) so that 3x2 + c = 0 but this is impossible.

5.6 Lagrange theorem

Rolle’s theorem only applies to cases when f(a) = f(b). What is the general phenomenon

behind it?
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Theorem 56 (Largrange). Let f be continuous in [a, b] and differentiable in (a, b).

Then, there is x ∈ (a, b) so that

f ′(x) =
f(b)− f(a)

b− a
.

Geometrically: there is a point in the interval in which the tangent is parallel to the

line through (a, f(a)) and (b, f(b)).

One interpretation is related to speeding. If someone drive 100 km in 30 minutes,

then although his speed was never measured, it is still certain that at some point in time

his speed was 200 km/h.

In high level, the theorem translates global information (f(a), f(b) for far away a, b)

to local information (the derivative at x).

We shall not prove, but one can use Rolle’s theorem to prove this one.

We can apply Lagrange theorem to learn global properties of f from local ones.

Imagine, for example, a queue in which every person is higher than the person in front

of her. Then e.g. the last person is higher than the first person.

Corollary 57. Let f be continuous in [a, b] and differentiable in (a, b).

• If f ′(x) = 0 for all x ∈ (a, b) then f is constant.

• If f ′(x) ≥ 0 for all x ∈ (a, b) then f is increasing.

• If f ′(x) > 0 for all x ∈ (a, b) then f is strongly increasing.

• Similarly for ≤ 0 and < 0.

Proof. Let us prove the third item, for example. Let a′ < b′ be two points in (a, b). By

Lagrange’s theorem, there is x ∈ (a′, b′) so that

f(b′)− f(a′) = f ′(x)(b′ − a′).

Since f ′(x) > 0 and b′ > a′, we know f(b′)− f(a′) > 0.

Comment: For items 1,2 the other direction holds as well. That is, if f is constant

then f ′ = 0, and if f is increasing and differentiable then f ′ ≥ 0. The other direction

in item 3 does not necessarily hold: the function x 7→ x3 is strongly monotone but the

derivative at 0 is 0.

5.7 Applications

Inequalities.
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Claim 58. For every x ≥ 0 we have

ln(1 + x) ≥ x

1 + x
.

Proof. Denote

f(x) = ln(1 + x)− x

1 + x
.

Thus

f ′(x) =
1

1 + x
· 1− 1 + x− x

(1 + x)2
=

1 + x− 1

(1 + x)2
=

x

(1 + x)2
≥ 0.

Lagrange theorem implies that f is increasing so f(x) ≥ f(0) = 0.

Qualitative behavior of functions. One important ability to have is to describe

the qualitative behavior of a system: Is the market about to go to depression? Is the

health of a person improving? ...

The general idea is simple. If we want to understand the regions in which f increases

or decreases then we just need to understand the positivity or negativity of f ′.

Before stating the general property we are going to use, let us consider a simple

example that will help to clarify it. Consider the function f(x) = x3. We know it is

strongly increasing on R. However, f ′(x) = 3x2 has a root at 0. So the roots of f ′ are

not necessarily local maximum or minimum in f . How can we recognize this? The idea

is to use another derivative. In this example, not only that f ′(0) = 0 but also f ′′(0) = 0.

Claim 59. Let f be differentiable twice in (a, b) and x ∈ (a, b). If f ′(x) = 0 and

f ′′(x) 6= 0 then x is a local minimum or maximum.

Explanation. Assume f ′′(x) > 0 (the other case is similar). Therefore, we know that if

z is close to x we have
f ′(z)

z − x
=
f ′(z)− f ′(x)

z − x
> 0.

So f ′ is positive to the right of x and negative to the left of x. So f is increasing to the

right of x and decreasing to the left of x. This means that x is a local minimum.

Example: f(x) = x3 − 3x + 4. Thus f ′(x) = 3x2 − 3 and f ′′(x) = 6x. The roots of

f ′ are ±1. And f ′′(1) > 0 and f ′′(−1) < 0. This means that 1 is a local minimum and

−1 is a local maximum. Also f(1) = 1 − 3 + 4 = 2 and f(−1) = −1 + 3 + 4 = 6. We

can finally provide a rough sketch of f .

Finding special points. Let A = (−1, 0) in R2. Consider the line y = x + 2. Its

graphs is set of points of form (x, x+ 2). Find a point B on the line that is closest to A.

For a point (x, x + 2) the distance from A is
√

(x+ 1)2 + (x+ 2)2. This is minimal iff

the square of it is. That is, we want to find x the minimizes f(x) = (x+ 1)2 + (x+ 2)2.

The derivative is f ′(x) = 2(x + 1) + 2(x + 2) = 4x + 6 and so the root of f ′ is −3/2.
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The point that minimized distance is (−1.5, 0.5). Observe that B − A = (−0.5, 0.5) is

orthogonal to say (1, 3)− (0, 2) = (1, 1) which makes sense.

5.8 L’hospital rule

In many cases we get an expression of the form limx→a
f(x)
g(x)

where both f, g tend to 0 or

∞ at a. For example, limx→0
1−cos3(x)
sin(x)

. How do we deal with them?

Theorem 60 (L’hospital). Let f, g be two functions that are differentiable in a neigh-

borhood of a. Assume that

1. limx→a f(x) = limx→a g(x) = 0.

2. g′(x) 6= 0 in a (punctured) neighborhood of a.

3. limx→a
f ′(x)
g′(x)

= L.

Then,

lim
x→a

f(x)

g(x)
= L.

How to use for example above? Well, f(x) = 1−cos3(x) gives f ′(x) = 3 cos2(x) sin(x),

and g(x) = sin(x) gives g′(x) = cos(x). Also,

lim
x→0

f ′(x)

g′(x)
= lim

x→0
3 cos(x) sin(x) = 0.

So, limx→0
1−cos3(x)
sin(x)

= 0.

Rough explanation.

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=

f(x)−f(a)
x−a

g(x)−g(a)
x−a

→ L.

Comments:

- Use only in situations like 0/0 or ∞/∞. In other cases it does not work.

- You can also use for limits at ∞ or for one sided limits.

- If g′(a) = f ′(a) = 0 then we use rule again and consider f ′′(x)/g′′(x).
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- There are many ways to apply rule. For example, also for “∞−∞”.

lim
x→0

1

sin(x)
− 1

x
= lim

x→0

x− sin(x)

x sin(x)

= lim
x→0

1− cos(x)

sin(x) + x cos(x)

= lim
x→0

sin(x)

cos(x) + cos(x)− x sin(x)
=

0

2
= 0.

Orders of magnitude. In general for x large we have

· · · �
√

log(x)� log(x)� x� x2 � · · · � 2x � ex � · · · .

Let us see some examples:

lim
x→∞

log(x)

x
= lim

x→∞

1/x

1
= 0.

and

lim
x→∞

x3

ex
= lim

x→∞

3x2

ex
= lim

x→∞

6

ex
= 0.

Generally, if f(x)
g(x)
→ 0 when x→∞ then we say that f is greater order of magnitude

than g.

5.9 Convex functions

Convex functions form an important family of functions. There are several equivalent

definitions of convexity, each provides a different perspective.

Definition 61 (Convexity-geometric). The function f is convex in an interval I if for

every a < b in I the line segment between (a, f(a)) and (b, f(b)) is above the graph of

the function.

Definition 62 (Convexity-analytic). The function f is convex in an interval I if for

every a < b in I and for every p ∈ [0, 1] we have

f(pa+ (1− p)b) ≤ pf(a) + (1− p)f(b).

Discuss the connection between the two definitions by drawing an example.

If there is a strict inequality or the line does not touch the graph (except at endpoints)

then we say that f is strongly convex.

Claim 63. If f is convex in an open interval I then f is continuous in I.



5.10. GRAPHS 43

Shall not prove. However, there are convex functions that are not differentiable. For

example, |x|.
Convexity is a global property – it is related to far away points. We can also give

local definitions.

Claim 64 (Equivalent definitions). Assume f is convex in an open interval I.

1. If f is differentiable in I then f is convex iff for every x ∈ I the tangent to f at x

is under the graph of the function.

2. If f is differentiable in I then f is convex iff the function f ′ is increasing in I.

3. If f is twice differentiable in I then f is convex iff for all x ∈ I we have f ′′(x) ≥ 0.

We shall not prove.

The last item is easiest to verify, as long as f is twice differentiable. We can now see

that x, x2, ex are convex on R. The function x3 is not convex on R but is on (0,∞).

An important convex function is − ln(x) = ln(1/x) for x > 0. Indeed, the second

derivative is 1/x2 > 0. Application: the arithmetic mean geometric mean inequality.

Claim 65. For all a, b > 0, we have
√
ab ≤ (a+ b)/2.

Proof. The function ln(1/x) is decreasing, so we need to show

(1/2)(ln(1/a) + ln(1/b)) = ln(1/
√
ab) ≥ ln(1/((a/2) + (b/2))).

This is exactly convexity of this function (2nd derivative is 1/x2 > 0).

Using induction, we can generalize the definition of convexity, and prove for example

the general arithmetic mean geometric mean inequality.

Claim 66. If f is convex in an open interval I and x1, x2, . . . , xn ∈ I and p1, p2, . . . , pn >

0 so that
∑n

i=1 pi = 1 then

f

(
n∑
i=1

pixi

)
≤

n∑
i=1

pif(xi).

This can be proved by induction, but we shall not.

5.10 Graphs

It is very helpful to draw, and graphical representation may dramatically help in under-

standing complex systems. One example is Chernoff Faces in which high dimensional
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data is represented as a drawing of some face, and the expression of the face can be

related to the state of the system.

Let us consider a few examples.

f(x) = x3. The derivative is 0 only at 0 and is always ≥ 0. So the function is

increasing. To the right of 0 we have f ′′ ≥ 0 which mean that f is convex. To the

left of 0 we have f ′′ ≤ 0 which means that f is concave (−f is convex). The point

0 is suspicious, since f ′(0) = 0. But it is not a maximum or a minimum. It is a

transition point between convexity and concavity. Such a point is called an inflection

point (“pitul”).

Definition 67. A point a is an inflection point of f if f is convex to one side of a and

concave in the other.

Comments:

- This is not equivalent to f ′′(a) = 0. For example, x4 at 0.

- Sometimes a is an inflection point even though f is not defined at a. For example,

1/x at 0.

f(x) = x
1+x2 . Let us go over the list of things to do. It is helpful to have a drawing

the you update as you go along.

1. Domain. x and 1 + x2 are defined over all R and 1 + x2 is always non zero. So

the domain of f is R.

2. Continuity. Again, it is a ration of 2 continuos function so it is continuous.

3. Even/odd. It is odd f(−x) = −x
1+(−x)2 = −f(x).

4. Roots. The only root is 0.

5. Derivatives, extreme points, monotonicity...

f ′(x) =
1 + x2 − x · 2x

(1 + x2)2
=

1− x2

(1 + x2)2
.

It is zero at ±1. It is positive in (−1, 1). It is negative in (−∞,−1) ∪ (1,∞). So: It is

decreasing to left of −1. It has a local minimum at −1. It is increasing between −1, 1.

It has a local maximum at 1 and it is increasing after 1.

Since the only root of f is 0, we learn that −1 is a global minimum and 1 is a global

maximum.

6. Behavior at ±∞. The limit at ∞ and −∞ of f is 0.

The values f(1) = 1/2 and f(−1) = −1/2. So f attains a global maximum at 1 and

a global minimum at −1.

7. Convexity, inflection points, 2nd derivatives,... Since f is convex at −1 and

concave at 1, there is an inflection point between them. Similarly, f is convex x much

larger than 1 so there is an inflection point to right of 1, and also to left of −1 due to

symmetry.
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To find inflection points, need to understand the monotonicity of f ′. One way is to

compute

f ′′(x) =
−2x(1 + x2)2 − 2(1 + x2)2x(1− x2)

(1 + x2)4

=
−2x(1 + x2)((1 + x2) + 2(1− x2))

(1 + x2)4

=
−2x(1 + x2)(−x2 + 3)

(1 + x2)4
.

So the roots of f ′′ are 0,±
√

3. These are the 3 inflection points of f , as we foresaw.

8. Asymptotes (related to behavior at ±∞). In the example from above,

lim
x→∞

f(x) = 0

and also at −∞. So the asymptotic behavior at ±∞ is clear.

Sometimes the behavior is more complex. The line ax+ b is an asymptote of f at∞
if f gets closer and closer to it. Draw.

Definition 68. The line ax+ b is an asymptote of f at ∞ if

lim
x→∞

f(x)− ax− b = 0.

Example: The function 2x2+sin(x)
x−3 has an asymptote 2x at infinity.

A function may have a right vertical asymptote at a point a if the generalized limit

limx→a+ f(x) = ∞. The function above has a right vertical asymptote at 3 (and also a

left one).

How to compute a, b? Well,

a = lim
x→∞

f(x)

x

and after finding a,

b = lim
x→∞

f(x)− ax.

In the example,

a = lim
x→∞

2x2 + sin(x)

x(x− 3)
= 2,

and

b = lim
x→∞

2x2 + sin(x)

x− 3
− 2x = lim

x→∞

2x2 + sin(x)− 2x(x− 3)

x− 3
= 0.

To conclude, when studying a function in this course, there is a list of 7-8 things to

do or check.
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5.11 Approximations

We have used derivatives in several ways. As a tool for finding extreme points, and

understanding a given function better in general. As a tool for proving that a function is

convex. We now use it to approximate quantities of interest. This is of great importance,

and in some way this is what calculators do.

Assume that we want to approximate a function f around a point a. For example,

the function sin(x) around 0; what is sin(0.1)? If the function is continuous, then we

know that f(x) ≈ f(a) if x is close to a. If the function is differentiable, we can get a

better approximation. We know that if x is close to a then

f ′(a) ≈ f(x)− f(a)

x− a
.

In other words, we can approximate f in the vicinity of a by the tangent to the graph

of f at a:

f(x) ≈ f(a) + f ′(a)(x− a).

Why is this a better approximation? Well,

|f(x)− f(a)| ≈ |f ′(a)| · |x− a|.

But

|f(x)− f(a)− f ′(a)(x− a)| = |x− a| ·
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣� |x− a|,
which is a much better approximation. For example, the first approximation gives

sin(0.1) ≈ 0 and the second gives sin(0.1) ≈ 0 + cos(0) · 0.1 = 0.1. A more accurate

answer using a calculator is sin(0.1) ≈ 0.09983.

Theorem 69 (Taylor). A function f is differentiable at a iff there are functions G,E

so that

f(x) = f(a) +G(a)(x− a) + E(x),

where

lim
x→a

E(x)

x− a
= 0.

In addition, f ′(a) = G(a).

We shall not prove theorem, but it shows that approximating f(x) as f(a)+f ′(a)(x−
a) is a good approximation if x is close to a. Think of E(x) as the error of the estimate.

If f is continuous, we get a good approximation to f(x). If it is differentiable, we

get a better approximation. Having more and more data on f , we get better and better
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approximations.

Definition 70. Let f be a function that is differentiable n times at a. The degree n

Taylor polynomial for f at a is defined as

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

=
n∑
k=0

f (k)(a)

k!
(x− a)k.

This polynomial is a good approximation for f . The 0th approximation is f(a). The

1st approximation is f(a)+f ′(a)(x−a). The 2nd is f(a)+f ′(a)(x−a)+f ′′(a)(x−a)2/2.

And so forth.

Claim 71. If f is differentiable n times at a then for all 1 ≤ k ≤ n

T (k)(a) = f (k)(a).

Proof. The kth derivative of Tn removes all powers less than k. The kth power is

multiplied by k!. The powers that are larger than k are zeroed since we substitute a.

Overall,

T (k)(a) = k! · f
(k)(a)

k!
.

The Taylor polynomial is usually a good approximating to f , and as the degree

grows, the approximation becomes better and better.

Examples.

f(x) = ex at 0. f (k)(0) = ex|x=0 = 1. So,

Tn(x) =
n∑
k=0

xk

k!
.

f(x) = sin(x) at 0. f (1)(x) = cos(x), f (2)(x) = − sin(x), f (3)(x) = − cos(x),

f (4)(x) = sin(x), and so forth. At 0, all the even derivates are 0. And,

Tn(x) = x− x3

3!
+
x5

5!
+ . . . .

So we can approximate f(x) in this way. But how can we know the size of the error?

Let

En(x) = f(x)− Tn(x).
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It is the error that Tn yields.

Theorem 72 (Taylor). Let f be differentiable n+ 1 times in a neighborhood I of a. For

every x ∈ I, there is c between a and x so that

En(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

Comments:

- It is an extension of Lagrange’s theorem.

- We do not know what c is, just that it is between a and x. This is still useful: We

can calculate e1/2 up to error 1/1000. Let f = ex. We want f(1/2). We saw

Tn(x) =
n∑
k=0

xk

k!
.

By the theorem, there is 0 < c < 1 so that

En(1) =
f (n+1)(c)

(n+ 1)!
(1/2)n+1 =

ec

(n+ 1)!
(1/2)n+1.

So, if n = 5 since e < 3

|En(1)| < 3

5!
(1/2)5 < 1/1000,

so we approximate

e ≈ 1 +
(1/2)

1
+

(1/2)2

2
+

(1/2)3

6
+

(1/2)4

24
= 1.6484375,

and the error is less than 1/1000 (calculator says 1.6487212707).

This is a numerical approximation. Instead of computing the value exactly (which

we can not for example with e) we approximate it well enough, using the theory we built

so far. This is what calculators basically do. Given an error parameter ε > 0, we need

to find n so that |En(x)| < ε and then we estimate f(x) by Tn(x). You can now estimate

e1/2,
√

1.1,...

- This procedure does not always work. For example, the function

f(x) =

{
e−1/x

2
x 6= 0

0 x = 0

This is a continuous function, but all the derivatives at 0 are 0, so Tn(x) = 0 for all n.

We can still describe general conditions for which this procedure actually works.
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Theorem 73. Assume that f is differentiable n times for all natural n. Let a ∈ R.

Assume that there is a constant C > 0 so that for all x ∈ R and n,

|f (n)(x)| < Cn.

Then,

lim
n→∞

|En(x)| = 0.

Proof. By Taylor’s theorem there is c ∈ R so that

|En(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣ ≤ Cn|x− a|n

(n+ 1)!
→ 0,

when n→∞.

Conclusion:
∑n

k=0
1
k!
→ e, when n→∞.

We thus concluded our discussion of derivatives.
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Chapter 6

Integrals

6.1 Indefinite integrals

We start with a more syntactic definition of integral and later on we give it seman-

tics/meaning.

Definition 74. An indefinite integral of f is a function F so that F ′ = f .

Example: f(x) = 2x then x2 and x2 +1 are both indefinite integrals of f . In general,

F (x) = x2 + c for all c. So, F is not unique.

Notation: F is denoted
∫
f(x)dx. This notation will be explained later on.

More examples:

-
∫
exdx = ex + c

-
∫
xndx = 1

n+1
xn+1 + c if n 6= −1

-
∫

1/xdx = ln |x| + c. Check: d
dx

ln(x) = 1/x for x > 0 and d
dx

ln(−x) = (1/(−x)) ·
(−1) = 1/x for x < 0.

-
∫

1
1+x2

dx = tan−1(x) + c.

- All the examples we already saw with derivatives (just in reverse);∫
f ′(x)dx = f(x) + c.

Properties of derivatives imply properties of integration.

Linearity of derivative implies

Theorem 75 (Linearity). If f, g have integrals then for all a, b ∈ R∫
af(x) + bg(x)dx = a

∫
f(x)dx+ b

∫
g(x)dx.

51



52 CHAPTER 6. INTEGRALS

For example, ∫
x+ exdx = x2/2 + ex + c.

Derivative of product implies: If u, v are differentiable function

(u · v)′ = u′ · v + u · v′.

Integrate by side to get

u(x) · v(x) =

∫
u′(x)v(x)dx+

∫
u(x)v′(x)dx

or

Theorem 76 (Integration by parts). If u, v are integrable then∫
u′(x)v(x)dx = u(x) · v(x)−

∫
u(x)v′(x)dx.

How to use? This is useful if we want to integrate f(x)·g(x) and we know
∫
f(x)dx :=

u(x). Because then ∫
f(x)g(x)dx = u(x)g(x)−

∫
u(x)g′(x)dx.

Examples:

-
∫
x ln(x)dx: Since

∫
xdx = x2/2 + c,∫

x ln(x)dx = (x2/2) ln(x)−
∫

(x2/2)(1/x)dx = x2 ln(x)/2− x2/4 + c.

-
∫

ln(x)dx: ∫
1 · ln(x)dx = x ln(x)−

∫
x(1/x)dx = x ln(x)− x+ c.

- There are many more, you will see in exercises.

Derivative of composition implies: assume F ′ = f then

(F (g(x)))′ = f(g(x)) · g′(x).

Theorem 77 (Substitution). Assume f, g are integrable and F =
∫
f(x)dx then∫

f(g(x))g′(x)dx = F (g(x)) + c.
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Example:
∫
ex

2
2xdx =? Set f(x) = ex and g(x) = x2, and get f(g(x)) = ex

2
and∫

f(x)dx = ex, and ∫
ex

2

2xdx = ex
2

+ c.

How do we use? We will not provide full proof here, but here is the method. Say we

want to compute some
∫
h(x)dx. And we want to change variable to y = y(x). (Above

we chose y = x2.) Then we write dy
dx

= y′, and so dy = y′dx. (We have not formally

justified.) Thus, ∫
h(x)dx =

∫
h(y)

1

y′
dy.

In the example above:∫
ex

2

2xdx =y=x2

∫
ey2x

1

2x
dy = ey + c = ex

2

+ c.

Another example: ∫
f ′(x)

f(x)
dx = ln |f(x)|+ c.

In many cases all three methods are used.

In general, there is no way to compute an integral of an elementary function. The

integral
∫
ex

2
dx for example is not elementary. It is not so easy to prove this.

Rational functions. There are other general methods that we shall talk about. We

will just give one example. ∫
−2x+ 4

(x2 + 1)(x− 1)2
dx =?

The idea is to decompose the rational function to parts. What are A,B,C,D so that

−2x+ 4

(x2 + 1)(x− 1)2
=
Ax+B

x2 + 1
+

C

x− 1
+

D

(x− 1)2
?

This is the first step in general. The rule is that the powers in numerator are smaller

than power in denominator. To find A,B,C,D calculate

Ax+B

x2 + 1
+

C

x− 1
+

D

(x− 1)2

=
(Ax+B)(x2 − 2x+ 1) + C(x2 + 1)(x− 1) +D(x2 + 1)

(x2 + 1)(x− 1)2

=
x3(A+ C) + x2(−2A+B − C +D) + x(A− 2B + C) +B − C +D

(x2 + 1)(x− 1)2
.
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So, A+ C = 0 or

A = −C.

And −2 = A+ C − 2B so

B = 1.

And

0 = −2A+B − C +D = −A+ 1 +D

and

4 = B − C +D = 1 + A+D.

Sum the two: 4 = 2 + 2D and

D = 1, A = 2, C = −2.

Finally, ∫
−2x+ 4

(x2 + 1)(x− 1)2
dx

=

∫
2x

x2 + 1
+

1

x2 + 1
− 2

x− 1
+

1

(x− 1)2
dx

= ln |x2 + 1|+ tan−1(x)− 2 ln |x− 1| − 1

x− 1
+ c.

Square roots. Sometimes when there are square roots it is helpful to use trigono-

metric functions. For example.∫ √
1− x2dx =x=sin y,dx=cos ydy

∫
cos2(y)dy =cos(2y)=2 cos2(y)−1

1

2

∫
cos(2y) + 1dy

=
1

4
sin(2y) +

y

2

=
1

4
sin(2 sin−1(x)) +

sin−1(x)

2

=sin(2t)=2 sin(t) cos(t)
1

2
x
√

1− x2 +
sin−1(x)

2
.

There are more examples...

6.2 Definite integrals

We have discussed integrals on a syntactic level. We shall now provide semantics/meaning

to them.
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Here the issue we will address is how to compute the area or volume of a given shape.

This is a useful ability to have, for example, you may wonder how much water does a

given bottle contain, or what is the area of a circle?

The idea is very simple. First, we learn how to measure the area of simple forms,

like rectangles and triangles. Then, we approximate every shape by small enough simple

shapes.

We focus on the area between the x-axis and a graph of a function f in the interval

[a, b]. This area is denoted by ∫ b

a

f(x)dx.

Area above the x-axis is positive and below is negative. Here and below, it is helpful to

draw examples.

One step functions. The simplest functions to consider are step functions. Let

f(x) = c for x ∈ [a, b] and f(x) = 0 otherwise. The area
∫ b
a
f(x)dx is the area of a

rectangle, so it is c(b− a).

Steps functions. Now consider a collection of step functions. Let a0 < a1 < a2 <

. . . < an. Let f be a function that equals ci in [ai−1, ai] for i ∈ {1, 2, . . . , n}. Draw it.

The area
∫ an
a0
f(x)dx is the area of several rectangles and equals

∑n
i=1 ci(ai − ai−1).

General functions. Let f be a general function. We shall approximate f by a

steps function.

Partition [a, b] to many small parts:

a = a0 < a1 < . . . < an = b.

When is such a partition good? If all parts are small. Define the parameter of this

choice of (ai) to be

max{ai − ai−1 : i ∈ {1, 2, . . . , n}}.

The smaller this parameter is, the more accurate the partition is.

Between ai−1 and ai the function f is not constant. We need to choose a point in

[ai−1, ai] to evaluate f in. Denote this point by ti.

Given a partition of [a, b] and a choice of evaluation points, the area under f should

be close to
n∑
i=1

f(ti)(ai − ai−1).

Draw it. This is called a Riemann sum.

Let us see a simple example. Consider f(x) = x in [0, 1]. What is the area? 1/2. Let

ai = i/n for large n define a partition of [0, 1]. Choose ti = i/n as well, for simplicity.
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The Riemann sum is
n∑
i=1

i

n

1

n
=

1

n2

n(n− 1)

2
→ 1/2,

when n→∞. The larger n is, the smaller the partition is, the better the approximation

to area is.

Of special interest to us are functions for which this method works. This roughly

means that as long as the parameter of the partition is small, we get a good approxima-

tion of area.

Definition 78. The function f is integrable in [a, b] if there is I ∈ R so that for every

ε > 0 there is δ > 0 so that for every a = a0 < a1 < . . . < an = b with parameter at

most δand for every choice of ti ∈ [ai−1, ai],∣∣∣∣∣I −
n∑
i=1

f(ti)(ai − ai−1)

∣∣∣∣∣ < ε.

We denote ∫ b

a

f(x)dx = I

and call it the integral of f between a, b.

The notation
∫

in this context is clearer than the “antiderivative” from before. Later

we shall explain connection. It is obtained from S which corresponds to “sum” by

elongating it, and the “dx” indicates what we are summing over.

We have defined the notion of integrability. It essentially says that we do not need

to make very clever choices in order to approximate the area under f using the method

above. But are there integrable functions?

Theorem 79. Let f be defined and bounded on [a, b]. If f is either continuous or

monotone then f is integrable.

We shall not prove. Note that if [a, b] can be partition to finitely many areas in which

f is integrable then f is also integrable.

There are functions that are not integrable, but they are relatively rare and we shall

not see an example.

Properties:

1. Changing the value of f on finitely many points does not change its integral.

2. Linearity: if f, g are integrable on [a, b] then∫ b

a

f(x) + g(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx
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and for every constant c ∈ R∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx.

3. Respect order: If f(x) ≤ g(x) for all x ∈ [a, b] and f, g are integrable then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

Draw. Specifically, if m ≤ f(x) ≤M for all x ∈ [a, b] then

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

Note: if f(x) ≥ 0 and is strictly positive at a single point then the integral can

still be zero. However, if f is continuous then it can not. If f(x0) > 0 then there

is δ > 0 so that f(x) > f(x0)/2 for all x so that |x− x0| < δ so∫ b

a

f(x)dx > 2δf(x0)/2 > 0;

draw.

4. Triangle inequality: If f is integrable in [a, b] then |f | is also integrable and∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.

5. Partition: If f is integrable in [a, b] and c ∈ [a, b] then∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

We further denote ∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

Then, for every c1, c2, c3 ∈ [a, b],∫ c2

c1

f(x)dx =

∫ c3

c1

f(x)dx+

∫ c2

c3

f(x)dx.

6. Continuity: If f is integrable in [a, b] and c ∈ [a, b] then the function F (t) =
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a
f(x)dx for t ∈ [a, b] is continuous. Intuitively, if we change t slightly, the area

changes slightly.

Proof for bounded functions: Let M be so that |f(x)| ≤ M for all x ∈ [a, b]. Let

ε > 0. Write

|F (t+ δ)− F (t)| =
∣∣∣∣∫ t+δ

t

f(x)dx

∣∣∣∣ ≤Mδ < ε

if δ < M/ε.

6.3 The fundamental theorem of calculus

We now explain the connection between indefinite and definite integrals.

Theorem 80. Assume f is continuous in [a, b] and that F (t) =
∫ t
a
f(x)dx. Then, F is

differentiable and F ′(x) = f(x) for all x ∈ (a, b).

Proof. Let x ∈ (a, b). Let us start with limit from right. What is

lim
z→x+

F (z)− F (x)

z − x
= lim

z→x+

∫ z
x
f(y)dy

z − x
?

Use sandwich. For every z ≥ x, denote

Mz = sup{f(y) : x ≤ y ≤ z}, mz = inf{f(y) : x ≤ y ≤ z}.

The continuity of f implies that

lim
z→x+

Mz = lim
z→x+

mz = f(x).

Now,

mz ≤
F (z)− F (x)

z − x
≤Mz,

so

lim
z→x+

mz = lim
z→x+

∫ z
x
mzdy

z − x
≤ lim

z→x+

∫ z
x
f(y)dy

z − x
lim
z→x+

∫ z
x
Mzdy

z − x
= lim

z→x+
Mz,

and indeed the limit from right is correct. A similar argument works for limit from left,

and completes the proof.

Comments:
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- Continuity of f is essential. For example, the integral of the function that is −1 on

[−1, 0) and 1 on [0, 1] has a “corner” at 0.

- This shows that if f is continuous then
∫ t
a
f(x)dx is an indefinite integral of it.

This connection allows to compute areas.

Theorem 81 (Newton-Leibnitz). If f is continuous in [a, b] and G is so that G′ = f

then ∫ b

a

f(x)dx = G(b)−G(a).

Proof. By fundamental theorem, the derivative of F (t) =
∫ t
a
f(x)dx is f . So, (F−G)′ = 0

which implies F = G+ c. So,

0 = F (a) = G(a) + c

and ∫ b

a

f(x)dx = F (b) = G(b) + c = G(b)−G(a).

This is very useful. It gives us the ability to compute areas (so far we had no general

way to do so, except than computing the limit). For example, we can calculate area of

circle, which is 1/4 of∫ 1

0

√
1− x2dx =

1

2
x
√

1− x2 +
sin−1(x)

2

∣∣∣1
0

= π/2.

Comments:

- Another intuitive perspective (not formal). Assume F ′ = f and we want to compute

the area under f in [a, b]. Draw. Choose a partition and evaluation points:∑
i

f(ti)(ai − ai−1) ≈
∑
i

F (ai)− F (ai−1) = F (b)− F (a),

since it is a telescopic sum.

- Composition: If H(t) =
∫ b(t)
a(t)

f(x)dx with a, b differentiable and F ′ = f then

H(t) = F (b(t))− F (a(t))

and by chain rule

F ′(t) = f(b(t))b′(t)− f(a(t))a′(t).
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Taking such derivatives is actually easy, for example,

d

dt

∫ t2

cos(t)

ex
2

dx = et
4

2t+ ecos
2(t) sin(t).

- Newton-Leibnitz also holds when f is integrable and G′ = f except finitely many

points.

6.4 Applications

Computing the area between two graphs. Say we want to compute the (positive) area

between the graphs of x and x2 between 0 and 2. Draw.

area =

∫ 1

0

x− x2dx+

∫ 2

1

x2 − xdx =
1

2
− 1

3
+

8

3
− 1

3
− 4

2
+

1

2
= 2.

Position and speed. Imagine a particle moving on the real line (one dimensional

for simplicity). If x(t) denotes the position on the line of a particle at time t, then

v(t) = x′(t) is its speed at time t and x(t) =
∫ t
0
v(s)ds.

This gives further motivation for considering “negative area” since a negative position

is natural.

Energy. If we want to move a suitcase from height 0 to height h, we need to invest

energy, use a force that cancels gravity. The energy or work we need to invest is
∫ h
0
Gdx =

Gh, where G is the gravity force (this is part of the theory of physics). This is called

the potential energy.

Mass of a wire. Consider a wire between [0, 1] with non uniform mass. Denote by

m(x) the mass of the part of the wire between 0 and x. Thus, ρ(x) = m′(x) is the mass

density at x and m(x) =
∫ x
0
ρ(y)dy.

Length of a line. Say we want to compute the length of a graph of a function f (not

the area under it). We need it to be nice enough, so we assume f is differentiable. How

can we do it? Let us start with an approximation, as we did for area. Let a0 < a1 <
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. . . < an be a partition of [a, b].

length ≈
n∑
i=1

distance from (ai−1, f(ai−1)) to (ai, f(ai))

=
n∑
i=1

√
(ai − ai−1)2 + (f(ai)− f(ai−1))2

=
n∑
i=1

(ai − ai−1)

√
1 +

(
f(ai)− f(ai−1)

ai − ai−1

)2

.

What does this converge to (if it does)?∫ b

a

√
1 + (f ′(x))2dx.

We shall not prove. Try to use this formula to calculate the circumference of a unit

circle (twice the length of the function
√

1− x2 from −1 to 1).

Approximations. As we mentioned, some functions do not have elementary integrals,

and for some the integrals are just very hard to compute. In many cases, we can use the

approximation methods we learned.

Assume we want to compute
∫ b
a
f(x)dx, but it is too complicated. We know we can

approximate f be a polynomial (Taylor a.k.a. MacLaurin) Tn, so we can approximate

the integral by
∫ b
a
Tn(x)dx.

6.5 Generalized integrals

So far we have considered integrals on intervals. What about a ray or all of R? The idea

is to use a limit to get from interval to a ray: If f is defined in [a,∞), we say that f is

integrable over [a,∞) if the limit

lim
b→∞

∫ b

a

f(x)dx

exists, and then we denote it by ∫ ∞
a

f(x)dx.

Example: ∫ ∞
1

1

x2
dx = lim

b→∞

−1

b
+ 1 = 1.

This is an infinite body with a finite volume.
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Non example:
∫∞
0

cos(x)dx does not exist. Also
∫∞
1

1/x does not exist (the area in

infinite).

Another problematic case is e.g. when a is a vertical asymptote of f . In this case,

we use a limit too. Assume f is defined in (a, b]. We say that f is integrable in [a, b] if

the limit

lim
c→a+

∫ b

c

f(x)dx

exists, and then we denote this limit by
∫ b
a
f(x)dx. For example,∫ 1

0

(1/
√
x)dx = lim

c→0+
2
√

1− 2
√
c = 2.

The integral
∫ 1

0
(1/x)dx however does not converge.

Comment: the two example above show that for every r ∈ R the integral
∫∞
0
xrdx

does not converge, since either on [0, 1] or on [1,∞] it does not. Note that to compute

for example
∫∞
0

1/x2 we actually need to take 2 limits, not just 1 (a limit to 0 and a

limit to infinity).

Finally, the integral
∫∞
−∞ f(x)dx is defined if the two integrals of f on (−∞, 0] and

[0,∞) converge (we can choose any other point instead of 0). These are two different

limits: It is not equivalent to that limR→∞
∫ R
−R f(x)dx exists, e.g. for f(x) = 1/

√
x for

every R the integral is 0 but the entire integral is not defined.

The generalized integral has the same properties we saw for usual integrals.

6.5.1 Comparison

Sometimes it is difficult to see if
∫∞
0
f(x)dx converges. Then, we can bound 0 ≤ f(x) ≤

g(x) for all x, and prove that the integral of g converges.

Theorem 82. Assume f, g are defined in [a,∞) and that 0 ≤ f(x) ≤ g(x) for all x ≥ a.

Then ∫ ∞
a

f(x)dx ≤
∫ ∞
a

g(x)dx.

Specifically, if the integral of f diverges to ∞ then so does that of g, and if the integral

of g converges then so does that of f .

Proof. Denote F (t) =
∫ t
a
f(x)dx and G(t) =

∫ t
a
g(x)dx. These two functions are mono-

tone non decreasing, and F (t) ≤ G(t) for all t. Thus, the same holds for generalized

limits.

It suffices that f(x) ≤ g(x) for large enough x.
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This is useful to prove convergence or divergence. For example, the integral
∫∞
0
e−x

2
dx

is defined (although we do not have a nice formula for it) since 0 < e−x
2
< e−x for x > 1,

and we know how to compute the integral of e−x.

6.5.2 Absolute convergence

When computing say
∫∞
−∞ f(x)dx we would like to have a condition that guarantees that

the integral is “well behaved.” (The importance of absolute convergence will become

clearer later on.)

Definition 83. The integral of f on [a,∞) absolutely converges if
∫∞
a
|f(x)|dx con-

verges.

This is a stronger condition than convergence. If an integral absolutely converges

then it converges—exercise.

The other direction does not necessarily hold. Let us see an example. The following

integral converges ∫ ∞
1

sin(x)

x
dx =parts −

cos(x)

x

∣∣∣∞
1
−
∫ ∞
1

cos(x)

x2
dx,

and the two terms are finite; the second since | cos(x)| < 1 and since the integral of 1/x2

converges—using comparison. But it does not absolutely converge:∫ ∞
1

| sin(x)|
x

dx ≥
∫ ∞
1

sin2(x)

x
dx =

∫ ∞
1

(1− cos(2x))/2

x
dx =

∫ ∞
1

1

2x
dx−

∫ ∞
1

cos(2x)

2x
dx,

the left term diverges and the second converges.

Summary. In this chapter we have discussed integrals. We have seen indefinite

integral (anti derivative) and definite integral (area under a graph). We have seen to

connection between the two (Newton-Leibnitz), as a tool to compute areas, and more

generally to understand physical systems and other systems. We have also defined the

area of an infinite domain.
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Chapter 7

Series

In the previous section, we have discussed integrals, which are a sum over a continuous

domain. We now move to discuss discrete sums.

We are given a sequence of numbers a1, a2, . . . and we would like to give a formal

meaning to their sum (if it makes sense). For example, 1/2 + 1/4 + 1/8 + . . . = 1. Draw.

Definition 84. Let a1, a2, . . . be a sequence of real numbers. Define

Sn = a1 + a2 + . . .+ an.

We call
∑∞

n=1 an a series. Define

∞∑
n=1

an = lim
n→∞

Sn,

if the limit exists. If the limit exists we say the series (“tur”) converges and write

|
∑∞

n=1 an| <∞, and otherwise we say it diverges.

The letter n just denotes the index of summation. It can also be m, k et cetera

(
∑∞

n=1 an =
∑∞

k=1 ak).

There are 2 different questions we can ask. One is “does the series converge?” A

more difficult one is “what is the limit?” We mostly focus on the easier question, but

provide some simple examples for the harder one.

Geometric series. Let q ∈ R be so that |q| < 1. Let an = qn−1 and

Sn = 1 + q + q2 + . . .+ qn−1 =
1− qn

1− q
.

So,
∞∑
n=0

qn = lim
n→∞

Sn =
1

1− q
.

65
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For example,
∞∑
n=0

(1/2)n = 2,

and
∞∑
n=0

(−1/2)n = 2/3.

If |q| ≥ 1 then the series diverges.

Telescopic sum. Let

an =
1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Then,
∞∑
n=1

an = lim
n→∞

n∑
k=1

1

k
− 1

k + 1
= lim

n→∞
1− 1

n+ 1
= 1.

Non example. Let

an =
1√
n
.

Then,

Sn ≥ n · 1√
n
→∞,

when n→∞.

We see that although an → 0 the series does not converge. For convergence, we need

an to go fast enough to 0. But it is a necessary condition.

Theorem 85. If
∑∞

n=1 an converges then limn→∞ an = 0.

Proof. Write an = Sn − Sn−1 for n > 1. By arithmetic of limits,

lim
n→∞

an = lim
n→∞

Sn − lim
n→∞

Sn−1 = 0.

Series have other useful properties, we now list 2 that are similar to properties we

saw already (and will not prove but easily follows from properties of limits).

Arithmetic. If
∑∞

n=1 an and
∑∞

n=1 bn converge then

∞∑
n=1

(αan + βbn) = α

∞∑
n=1

an + β

∞∑
n=1

bn,

for all α, β ∈ R.
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Comparison. If an ≤ bn for all n then

∞∑
n=1

an ≤
∞∑
n=1

bn.

The comparison test is useful to prove that monotone series converge.

Definition 86. A positive series is a series
∑∞

n=1 an with an > 0 for all n.

For example an =
∑∞

n=1 1/n2. It is not easy to compute this limit, but the comparison

test shows that it converges:

0 <
∞∑
n=1

1/n2 ≤ 1 +
∞∑
n=2

1

n(n− 1)
< 3,

as we saw.

Another example is

∞∑
n=1

sin(1/n2) ≤ C +
∞∑
n=1

2/n2 <∞

since sin(1/n2) < 2/n2 for large n. Note that it is a positive series, so it converges.

Theorem 87. If
∑∞

n=1 an is positive then it converges iff the sequence of partial sums

Sn =
∑n

i=1 ai is bounded.

Proof. This follows from that a monotone sequence converges iff it is bounded.

There are 2 simple tests the guarantee convergence, if (an) is positive.

1. Root test (Cauchy): If there is 0 < q < 1 so that (an)1/n ≤ q for every large enough

n then
∑∞

n=1 an converges. Indeed,

0 ≤
∞∑
n=1

an ≤ C +
∞∑
n=1

qn <∞.

2. Ratio test (Delamber): If there is 0 < q < 1 so that an+1

an
≤ q for every large

enough n then
∑∞

n=1 an converges. Indeed, it follows by induction that an < Cqn

for large enough n, and we can apply the previous argument.

Examples: 1. Let us consider
∞∑
n=1

2n + 4n

3n + 5n
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in 3 different ways. The root test:(
2n + 4n

3n + 5n

)1/n

→ 4/5.

The ratio test:
(2n+1 + 4n+1)/(3n+1 + 5n+1)

(2n + 4n)/(3n + 5n)
→ 4/5.

And straight away to comparison test:

∞∑
n=1

2n + 4n

3n + 5n
≤

∞∑
n=1

2 · 4n

5n
≤ 2

∞∑
n=1

(4/5)n <∞.

In general, use the comparison test, you need to find an upper bound that you already

proved that converges (like a geometric series).

Another comment is that to use the comparison test you do not need to show that

an ≤ bn for all n, it suffices to prove that an ≤ bn for large n, which specifically holds if

an/bn → L <∞. A similar statement holds for the other methods.

2. For every A > 0,
∞∑
n=1

An

n!
<∞

since
An+1/(n+ 1)!

An/n!
= A/(n+ 1) < 1/2

for large enough n.

Another very useful test for convergence is the integral test.

Theorem 88. Assume that f is non decreasing, non negative and integrable on [0,∞).

Then,
∞∑
n=1

f(n) ≤
∫ ∞
0

f(x)dx ≤
∞∑
n=0

f(n).

Specifically, if the left integral diverges the sum diverges, and if the right integral con-

verges then sum converges.

Proof. Draw: For every k it holds that∫ k

0

f(x)dx ≤
k∑

n=1

f(n) ≤
∫ k

1

f(x)dx.
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Examples: 1.
∞∑
n=1

1/n ≥
∫ ∞
2

1/xdx =∞.

This is called the harmonic series. It diverges.

The integral test can actually give a hint on the value of the sum. We can also deduce

that
∑k

n=1 1/n is roughly ln(k).

2. The sum of 1/np for 0 < p ≤ 1 therefore also diverges. On the other hand, if

p > 1 then the series converges.

3. Something we already saw:

∞∑
n=1

1/n2 ≤ 1 +

∫ ∞
1

1/x2dx <∞.

4. Something we did not see:

∞∑
n=2

1

n(ln(n))q

for q > 0. We use the integral test: it is at most∫ ∞
1

1

x(ln(x))q
dx =

y=ln(x),dy/dx=1/x

∫ ∞
1

1

yq
dy,

which converges iff q > 1 (also a lower bound holds). To conclude,

∞∑
n=2

1

n(ln(n))q

converges iff q > 1. So, for example,

∞∑
n=2

1

n ln(n)
=∞

and
∞∑
n=2

1

n(ln(n))2
<∞.

7.1 Signs matter

When there is a series that is not positive, it is easier to work with it if the series

absolutely converges.
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Definition 89. A series
∑∞

n=1 an absolutely converges if
∑∞

n=1 |an| converges. Other-

wise, we say it conditionally converges.

Theorem 90. If
∑∞

n=1 an absolutely converges then it converges.

Proof idea. The sum of all the negative parts converges to L+ and the sum of all the

positive parts converges to L−. The overall series converges to L+ + L−.

The other direction does not hold in general. The sequence
∑∞

n=1(−1)n/n does not

absolutely converges but it does converge. For every n, let

Sn = (−1)1/1 + (−1)2/2 + . . .+ (−1)n/n

= −1 + 1/2− 1/3 + 1/4− 1/5 + 1/6− . . .+ (−1)n/n

= −1/2− 1/12− 1/30− . . .− 1

2i(2i+ 1)
− . . .+ (−1)n/n.

This is a negative sum, except perhaps the last term that tends to 0. The negative

sum is bounded from below by −
∑∞

n=1
1
n2 > −∞ as we saw, so the sequence indeed

converges.

In fact, the following always holds (we shall not prove).

Theorem 91 (Leibnitz). If an → 0 as n → ∞ and 0 < an ≤ an+1 for all n then∑∞
n=1(−1)nan converges.

Comment: Monotonicity is important (if a2k = 1/k and a2k+1 = 1/k2 then the

alternating sum does not converge).

Example: for all p > 0 the sum
∑∞

n=1(−1)n/np converges (as we saw for some p it

does not absolutely converges).

Summary. In this chapter, we discuss infinite (but countable) sums. Defined as limit

of partials sums. We saw that some sums converge, some diverges, and gave some simple

criterions to decide.



Chapter 8

Power series

This is the last chapter in this course. In it, we represent functions in a certain useful

way. There is a lot more to it than we shall get to.

Definition 92. A power series is an expression of the form

∞∑
n=0

an(x− x0)n.

We will sometimes think of it as a function of x, but this does not always makes

sense, and we need to understand when it does.

Example:

1 + x+ x2 + . . . =
∞∑
n=0

1 · (x− 0)n.

This makes sense as a function only for x ∈ (−1, 1). For such x,

1 + x+ x2 + . . . =
1

1− x
.

We shall mostly consider x0 = 0, but remember that we can choose x0 as we wish.

A power series is a “polynomial of infinite degree.” As mention, it does not always

make sense. Therefore, we mark the domain in which it does as follows.

Definition 93. The domain of convergence of
∑∞

n=0 an(x− x0)n is D ⊆ R if for every

x ∈ D the sum converges.

Examples:

1. The domain of
∑∞

n=0 x
n is (−1, 1).

2. The domain of
∑∞

n=0 x
n/n! is R.

3. The domain of
∑∞

n=0 x
n/n is [−1, 1).

71
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4. The domain of
∑∞

n=0 x
2n is (−1, 1); it is equal to

∑∞
n=0(x

2)n so converges iff

|x2| < 1 or |x| < 1.

As a rule, the smaller the coefficients are, the larger to domain is.

In general, a power series has a radius of convergence.

Definition 94. The radius of convergence of
∑∞

n=0 an(x−x0)n is the largest (supremum)

number r > 0 so that for every x so that |x− x0| < r the sum converges.

Theorem 95 (Cauchy-Hadamard). For every power series
∑∞

n=0 anx
n there is 0 ≤ R ≤

∞ so that for every x so that |x| < R the series converges at x. (We allow R to be

infinity as well.) And for every x so that |x| > R the sum diverges (so if R = ∞ the

sum always converges). At the two points ±R the sum may converge or diverge.

Moreover, if the following limit exists

lim sup
n→∞

a1/nn = L

then

R =
1

L
.

(If L = 0 then R =∞.) Similarly, if the following limit exists

lim sup
n→∞

an+1

an
= L

then

R =
1

L
.

This gives two ways to compute the radius of convergence of a given series. It is a

way to understand when does the infinite sum makes sense. We shall not fully prove,

but explain why it works.

In examples 1,2,4 above R = 1 and in 3 it is ∞.

First, what is lim sup? Given (an), for every n define bn = sup{ak : k ≥ n}. It is a

new sequence (which is non increasing). Define

lim sup
n→∞

an = lim
n→∞

bn.

Specifically, the limits of an exists then it is equal to that of bn and the lim sup is just

lim. (Focus on this case.)

Second, why does it work? Assume x0 = 0 and assume that the limit of a
1/n
n exists

and equals to L. Thus, for every K > L there is n0 so that if n > n0,

a1/nn ≤ K.
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So, if |x| < 1/K then the series absolutely converges (and hence converges):

∞∑
n=0

|anxn| =
n0∑
n=0

|anxn|+
∞∑

n=n0+1

|anxn| ≤
n0∑
n=0

|anxn|+
∞∑

n=n0+1

Knxn <∞,

since the first sum is finite and the second sum is a geometric series.

Third, examples:

1. The radius of
∑∞

n=0(2/n)xn is 1 since lim supn→∞(2/n)1/n = 1.

2. The radius of
∑∞

n=0 x
n/n! is ∞ since lim supn→∞

n!
(n+1)!

= 0.

3. The radius of
∑∞

n=0(x− 1)n is 1.

4. The radius of
∑∞

n=0 nx
n is 0; for every x the sum diverges.

Fourth, properties:

Theorem 96 (Continuity). If the radius of convergence of
∑∞

n=0 anx
n is R then for

every x ∈ (−R,R), the function

f(x) =
∞∑
n=0

anx
n

is continuous at x.

Example is
∑∞

n=0 x
n = 1/(1− x).

Theorem 97 (Arithmetic). If the radius of convergence of
∑∞

n=0 anx
n is at least R and∑

n=0 bnx
n is at least R the for every x ∈ (−R,R), the function

∞∑
n=0

(can + dbn)xn = c

∞∑
n=0

anx
n + d

∞∑
n=0

bnx
n.

Theorem 98 (Derivative and integration). Assume the radius of convergence of
∑∞

n=0 anx
n

is R. For every x ∈ (−R,R), let

f(x) =
∞∑
n=0

anx
n.

The function f is differentiable in (−R,R) and

f ′(x) =
∞∑
n=0

annx
n−1.
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The function f is integrable in (−R,R) and∫
f(x)dx =

∞∑
n=0

an
n+ 1

xn+1.

In short, we can do integration and derivative inside the sum, but only inside the

radius of convergence.

In fact, since we can take on derivative, we can take as many derivatives as we want.

Before we saw that (an) 7→ f . This actually tells us how to get from f to (an). Indeed,

f(0) = a0 + a10 + a20 + . . . = a0,

f ′(0) = 0 + a1 + 2a2x+ 3a3x
2 + . . .

∣∣∣
x=0

= a1

and in general

f (n)(0) = n(n− 1)(n− 2) . . . 1an,

or

an =
f (n)(0)

n!
,

which is exactly the coefficient of xk in the Taylor polynomial of f around 0. We can

write f as
∞∑
n=0

f (n)(0)

n!
xn,

inside the radius of convergence. This is called the Taylor expansion of f around 0. The

understand when it is meaningful, we need to compute the radius of convergence.

Example:

ex =
∞∑
n=0

xn

n!
.

This holds for all x ∈ R.

This and similar representations of a function is very useful in science. For example,

in physics it gives a way to solve the wave equation.

Another example: Consider
∞∑
n=0

xn =
1

1− x

for |x| < 1. Integrate to get

∞∑
n=0

xn+1/(n+ 1) = − ln(1− x).
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Specifically,

∞∑
n=0

(1/2)n+1/(n+ 1) =
1

2

1

1
+

1

22

1

2
+

1

23

1

3
+ . . . = ln(2) ≈ 0.693147

and (with a little faith)

1− 1

2
+

1

3
− 1

4
+ . . . = ln(1− (−1)) = ln(2).
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