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Chapter 1

Harmonic analysis and linear
algebra

We start with an abstract study of abelian groups. All groups we consider will be finite.

Let G be an abelian group, that is, gg0 = g0g for all g, g0 in G. There are many examples

of such groups in the theory of computing, but perhaps the most notable one is the

discrete cube

G = {0, 1}n

with the group operation being coordinate-wise addition modulo two. It will be a good

example to keep in mind.

1.1 Diagonalizing the space of functions on G

We wish to understand properties of G. The main tool we shall use will be linear algebra.

To do so, we need to find a useful vector space. As is typically done, we consider

C[G] = {f : G ! C}.

This vector space has a natural inner product defined over it

hf, f 0i = 1

|G|
X

g2G

f(g)f 0(g) := Eff 0,

where c is the conjugate of c 2 C.
So we have a vector space to play with. We shall try to study G by its action on

C[G]. A group G acts on a set X if every g 2 G defines a map1 g(x) from X to itself

1We slightly abuse notation.
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6 CHAPTER 1. HARMONIC ANALYSIS AND LINEAR ALGEBRA

that is a group homeomorphism, that is,

(gg0)(x) = g(g0(x)),

for all g, g0 2 G and x 2 X. Every map g : X ! X is one-to-one and onto since it has

an inverse g�1. Here are some well-known examples of group actions:

• A group G can act on itself X = G by left multiplication g(h) = gh.

• The two-dimensional a�ne group G over a finite field X = F acts on the line F:
Every element of G is of form g = (a, b) where a, b 2 F and a 6= 0, and

g(x) = ax+ b,

for every x 2 X.

When G acts on X, it also acts on C[X] = {f : X ! C} by 2

(g(f))(x) = f(g�1(x)).

So the group G also acts on C[G]. The map f 7! g(f) is clearly a linear map on C[G] and

we may try to study the structure of these linear maps and from them learn something

about G. Choosing our basis to be the standard basis, we may represent this map by a

permutation matrix M
g

2 CG⇥G defined by

M
g

(x, y) = 1
gx=y

= 1
g=x

�1
y

.

We thus defined a map

g 7! M
g

.

This map is called the regular (matrix) representation of G and we shall discuss it in

more detail later on.

It is straightforward to observe that every two such matrices commute

M
g

M
h

= M
h

M
g

,

because G is abelian and so (gh)(f) = (hg)(f). We can now start using known properties

from linear algebra.

Lemma 1. If two diagonalisable matrices A,B commute then they can be diagonalised

together.

2The inverse of g is there to guarantee that it is an action since (gh)�1 = h�1g�1.
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Proof when all eigenvalues are distinct. Assume A,B are n by n. Assume that there is

a list v
1

, . . . , v
n

of eigenvalues of A so that Av
i

= �
i

v
i

for eigenvalues �
i

, and that �
i

6= �
j

for all i 6= j. Since A,B commute, for all i,

ABv
i

= BAv
i

= �
i

Bv
i

,

so Bv
i

is also an eigenvector of A with eigenvalue �
i

which means that Bv
i

is in the

span of v
i

. In other words, v
i

is also an eigenvector of B.

We leave the proof in the general case as an exercise.

1.2 Eigenvectors are characters

With the lemma in mind, we can deduce that if |G| = n then there are v
1

, . . . , v
n

in

C[G] so that for all g 2 G, we have

M
g

v
i

= �
i,g

v
i

.

Fix v = v
i

and �
i,g

= �
g

. By definition, for all g 2 G,

v(g) = (g(v))(1) = (�
g

v)(1) = �
g

v(1),

so all entries of v are determined by v(1) which we may take to be v(1) = 1 and then

�
g

= v(g). In this case,

v(gh) = (gh)(v) = g(h(v)) = g(v(h) · v) = v(h) · v(g).

Since M
g

is a permutation matrix, the eigenvalues v(g) of M
g

are complex roots of unity.

Denote D = {c 2 C : |c| = 1}, the complex unit circle. We see that every eigenvector v

defines a homeomorphism from G to D. These homeomorphisms are called characters.

Definition 2. A map � : G ! D is a character of G if

�(gh) = �(g)�(h)

for all g, h 2 G.

Every eigenvalues thus yields a character. The implication in the other directions

holds as well: For every g, h 2 G and character � of G,

(M
g

�)(h) = �(gh) = �(g)�(h).

The character � is an eigenvector of eigenvalue �(g) of M
g

.
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There are therefore |G| di↵erent characters of G. The norm of each character is

clearly one:

k�k2
2

= h�,�i = 1

|G|
X

g2G

�(g)�(g) = 1.

They are also orthogonal: A useful observation is that

�(g) = �(g�1).

If � 6=  are two characters of G then

|h�, i|2 = 1

|G|2
X

g,g

02G

�(g) (g�1)�(g0�1) (g0)

=
1

|G|2
X

g,g

02G

�(gg0�1) (g�1g0)

=
1

|G|2
X

h2G

X

g,g

0
:gg

0�1
=h

�(h) (h�1)

=
1

|G|
X

h2G

�(h) (h�1) = h�, i.

Thus, h�, i 2 R and moreover

h�, i(1� h�, i) = 0.

Since �(h) 6=  (h) for some h 2 G, we know that �(h) (h�1) 6= 1 and so

|h�, i|  1� 1

|G| +
|�(h) (h�1)|

|G| < 1,

which means

h�, i = 0.

This concludes the first part of the discussion. When studying an abelian group, we

looked on the vectors space C[G], and found the homeomorphisms from G to D ⇢ C
form a di↵erent orthonormal basis to C[G]. This basis will be sometimes much easier to

work with.

1.3 Examples and basic properties

Here are four examples:
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• The group Z
2

has two characters �
0

,�
1

defined by

0 1

�
0

1 1

�
1

1 �1

The all one vector �
0

is called the trivial character.

• The cyclic group Z
n

has n characters �
0

, . . . ,�
n�1

: If we denote by ! = e2⇡i/n the

n’th root of unity, then

�
i

(j) = !ij.

• If a group G has characters �
0

, . . . ,�
n

and G0 has characters �0
0

, . . . ,�0
n

0 then the

group G⇥G0 has characters

�
(i,i

0
)

(g, g0) = �
i

(g)�
i

0(g0).

• The discrete cube Zn

2

has 2n characters indexed by y 2 {0, 1}n:

�
y

(x) = (�1)
P

i2[n] xiyi .

We shall sometimes identify y with the set {i 2 [n] : y
i

= 1}.

The second and third bullets above describe how to build the characters of all finite

abelian groups, due to the known structure of such groups as a product of cyclic groups.

The set of characters Ĝ of G forms a group by itself: The group operation is defined

by

(� )(g) = �(g) (g).

It can be verified that G and Ĝ are isomorphic as groups.

Given a function f 2 C[G], we may therefore write it uniquely as

f =
X

�2 ˆ

G

f̂(�)�,

where

f̂(�) = hf,�i 2 C.

We can therefore think of f̂ as a function from Ĝ to C. This function is called to Fourier

or Walsh-Fourier transform of f . Sometimes there will be a clear identification between

G and Ĝ and then we shall think of f̂ as a function on G. For example, for a prime

cyclic group G = Z
p

, there is a natural identification between g 2 G and the character

�
g

(x) = !x

g

where !
g

= e2⇡ig/p.
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Since Ĝ is a set of orthonormal vectors, it preserves inner products

hf, hi =
X

�, 2 ˆ

G

f̂(�)ĥ( )h�, i =
X

�2 ˆ

G

f̂(�)ĥ(�).

Parseval’s identity follows

kfk2
2

=
1

|G|
X

g2G

|f(g)|2 =
X

�2 ˆ

G

|f̂(�)|2.



Chapter 2

Applications

2.1 Pseudorandom sets

As a first applications, we consider pseudorandom sets. The basic notions we wish to

define and study is the amount of randomness in of subsets of G or more generally

functions on it.

2.1.1 Measuring amount of randomness

Let p be a probability distribution on G. How do we measure the amount of randomness

in p? The “most random” distribution on G is the uniform distribution u on it. The

amount of randomness in p can be therefore measured by its distance from u. There are

several metrics we can use:

The first we mention is called statistical distance or L
1

distance. The statistical

distance (a.k.a. total variation distance) between two distributions p, q on G is defined

as

stat-dist(p, q) = max{|p(S)� q(S)| : S ⇢ G}.

It measures the di↵erence between the p-measure and the q-measure of every event in

the space. It is equivalent to L
1

distance

kp� qk
1

=
X

g2G

|p(g)� q(g)|,

that is,

kp� qk
1

= 2 · stat-dist(p, q)

(an exercise: draw histograms).

The second metric is the L
2

metric, which is most natural in the context of harmonic

11



12 CHAPTER 2. APPLICATIONS

analysis:

kp� qk2
2

= hp� q, p� qi.

Observe that by Cauchy-Schwartz

kp� qk
1

=
X

g

|p(g)� q(g)|  |G| · kp(g)� q(g)k
2

.

Specifically, when measuring the distance from u, using the linearity of the Fourier

transform and Parseval,

kp� uk2
2

=
X

�

|p̂(�)� û(�)|2.

What is the Fourier transform of u? Denote by �
0

the trivial character of G. Thus,

û(�) =
1

|G|h�,�0

i = 1

|G|1�=�0 .

Observe also that

p̂(�
0

) =
1

|G| .

Therefore,

kp� uk2
2

=
X

� 6=�0

|p̂(�)|2.

The L
2

distance of p from u is thus neatly expressible in the language of harmonic

analysis.

As a comment we mention another useful way to measure “distance” between distri-

bution. The divergence between p, q is defined as

D(p||q) =
X

g

p(g) log
2

p(g)

q(g)
.

It is not a metric but it satisfies similar properties. When measuring D(p||u) we get (up
to translation and a minus sign) the entropy of p, which is a well known measure of the

amount of randomness in p.

2.1.2 Small biased sets

From the discussion above, we see that one way to measure the amount of randomness

in p has a natural interpretation in term of harmonic analysis (kp� uk
2

). This is one of
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the motivations for the following definition.

Definition 3. A distribution p on a finite abelian group G is called ✏-biased if for every

nontrivial character � 2 Ĝ,

|bp(�)|  ✏

|G| .

Every distribution is 1-biased, using the triangle inequality. The uniform distribution

u is 0-biased, and this is the only 0-biased set. An ✏-biased set S is close to the uniform

distribution in the sense that

X

g2G

(p(g)� u(g))2  ✏.

Motivation. Motivation for studying ✏-biased sets over say G = Zn

2

comes from

pseudorandomness. The general aim of this area is constructing objects that are not

truly random but are close enough (in a useful way) to being random.

Fooling statistical test. A useful notion in the theory of computing is a fooling

set against a given family of statistical tests. A distribution p on G is said to ✏-fool the

set F ⇢ C[G] if for every f 2 F ,

|E
g⇠p

f(g)� E
g⇠u

f(g)|  ✏,

where g ⇠ p means an element drawn from p
T

. When F = {1
S

: S ✓ G}, for example,

p ✏-fools F i↵ p is ✏-close to u in statistical distance. When F = {f
R

: R ✓ [n]} is

the set of linear functions (f
R

(x) =
P

i2R x
i

from G = Zn

2

to Z
2

), ✏-fooling F means

exactly ✏-biased. So, ✏-biased is a weaker notion than being close to uniform in statistical

distance. It is nevertheless su�cient in many applications.

Codes. Another motivation to study ✏-biased sets over G = Zn

2

is the connection

to coding theory [Azar, Motwani, and Naor]. Let S ⇢ Zn

2

be an ✏-biased set. For every

R ✓ [n], define v
R

2 ZS

2

by v
R

(s) = f
R

(s). Two key observations are

• The fraction of ones in v
R

is between 1/2� ✏ and 1/2 + ✏.

• The set V = {v
R

} is closed under addition in ZS

2

.

This means that V is a linear subspace of ZS

2

, of dimension n so that the hamming

distance (i.e. number of entries of di↵erence) between every v 6= v0 in V is at least

|S|(1/2� ✏). An ✏-biased set thus corresponds to a linear error correcting code. We shall

discuss codes in more detail later on.

Background. We see that finding as small as possible ✏-biased sets is of interest in

coding theory as well as pseudorandomness. It is known [McEliece, Rodemich, Rumsey

and Welch] that there are limitation to size of such sets. For G = Zn

2

, their size must
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be at least order n

✏

2
log(1/✏)

, when ✏ is not too small. It can also be shown that a random

subset of G = Zn

2

of size order n/✏2 is w.h.p. ✏-biased.

Constructions. Explicit constructions of such small ✏-biased sets are not known,

but constructions that are almost as good are known. We shall now explain one sim-

ple construction [Alon-Mansour, Alon-Goldreich-Hastad-Peralta] that gives an ✏-biased

distribution with support of size order (n/✏)2. The analysis uses harmonic analysis.

For simplicity assume that n/✏ is a power of two, so log base two of it is k. Consider

the field F = F
2

k of size n/✏. For every x, z 2 F, define s = s(x, z) in G by

s
i

= (xzi)
1

,

for every i 2 [n], i.e., the first bit in the field element xzi (out of k possible bits). Define a

distribution p on G as the distribution on s = s(x, z) when x, z are chosen independently

at random from F. The support of p is indeed of size at most (n/✏)2. Bound |G| · |p̂(�
y

)|
for y 6= ; as follows:

|G| · |p̂(�
y

)| =
X

g

p(g)�
y

(g)

=
X

g

X

x,z:s(x,z)=g

1

|F|2�y

(g)

=
1

|F|2
X

x,z

(�1)
P

i2y(xz
i
)1

=
1

|F|2
X

x,z

Y

i2y

(�1)(xz
i
)1 .

The map t 7! (�1)t1 is a character of the field F. Denote it by  . Therefore,

|G| · |p̂(�
y

)| = 1

|F|2
X

x,z

Y

i2y

 (xzi)

=
1

|F|2
X

x,z

 (x
X

i2y

zi).

Since y 6= ;, the polynomial h(⇠) =
P

i2y ⇠
i is nonzero of degree at most n, which means

that

Pr
z

[h(z) = 0]  n

|F|  ✏.
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On the other hand, for all z so that g(z) 6= 0, we get

1

|F|
X

x

 (xh(z)) = 0,

since it is an inner product of a nontrivial character of F with the trivial one. Overall,

|G| · |p̂(�
y

)|  ✏
1

|F|
X

x

 (x · 0) = ✏.

One may observe that in the above argument, we did not really require x to be every

element of F, but we could have chosen it from an ✏-biased set in F. The bound obtained

would be 2✏ instead of ✏. This gives a construction [Alon et al.] with S of size at most

|F| · log
2(|F|)
✏2

⇡ n

✏3
log2(n/✏),

which is smaller than (n/✏)2 for some choice of parameters.
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2.2 Basic number theory

We now discuss Gauss sums which are a basic object and tool in number theory. Let F
be a finite prime field of size p > 2. The field consists of two groups, and additive one

(F,+) and a multiplicative one (F⇤, ·). Each of these groups has its own characters.

The additive group is of size p is cyclic and we know its characters. We shall use

� to denote additive characters. The multiplicative group is cyclic as well, but not of

prime order so we do not have nice formulas for it characters. We shall use  to denote

multiplicative characters.

An example to a multiplicative character  is quadratic residuosity:  (g) = 1 if

g = x2 for some x 2 F⇤ and  (g) = �1 otherwise (if extended to F by  (0) = 0, it

is called the Legendre symbol we consider below). It is a multiplicative character for

the following reason. Observe that the map A(g) = g(p�1)/2 maps every x to {1,�1}
(the only elements whose squares are one). The claim is that A and  agree (although

take values in di↵erent fields). The map B(g) = g2 is onto the quadratic residues and

is two-to-one (B(g) = B(�g) and g 6= �g since p > 2). So there are exactly (p � 1)/2

quadratic residues. If  (g) = 1 then clearly A(g) = 1. On the other hand, A(g) = 1 is a

polynomial equation of degree (p� 1)/2. So, |A�1(1)| = (p� 1)/2 and so if  (g) = �1

then A(g) 6= 1 which means A(g) = �1.

This is already non-trivial as it tells us that half of F⇤ are quadratic residues and

that if e.g. g is a quadratic residue and g0 is not, then gg0 is not as well.

A Gauss sum is a sum of the form

X

x2F⇤

 (x)�(x).

It measures the correlation between additive and multiplicative characters. In other

words, it is an additive Fourier coe�cient of the set of the quadratic residues. Trivially,

the maximum value it may attain is n. A general formula for Gauss sums is not known,
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but its modulus is known.

�����
X

x2F⇤

 (x)�(x)

�����

2

=
X

x,y2F⇤

 (xy�1)�(x� y)

=
X

z,y2F⇤

 (z)�(y(z � 1))

=
X

z2F⇤

 (z)
X

y2F⇤

�(y(z � 1))

=
X

z2F⇤

 (z)(1
z=1

(p� 1) + 1
z 6=1

(�1))

= p (1)�
X

z2F⇤

 (z) = p.

This is a sum of (p�1) root of unity which always has the same modulus
p
p. The proof

is quite simple but shows the strength of rearranging sums, which is a basic and very

useful idea.

One application of Gauss sums is the following theorem due to Gauss. The Legendre

symbol of x 2 F = F
p

modulo p is the map

✓
x

p

◆
=

8
<

:

1 if there is y 2 F⇤ so that x = y2,

�1 if for all y 2 F⇤ we have x 6= y2,

0 x = 0.

Theorem 4 (Gauss). For every two odd primes p 6= q,

✓
p

q

◆✓
q

p

◆
= (�1)

p�1
2

q�1
2 .

We shall not prove the theorem here, but some proofs of it use the above estimate

of gauss sums. The theorem tells us several nontrivial properties of quadratic residues

and equations. For example, it shows that if p = 1 mod 4 then there is a solution to

x2 = p mod q

i↵ there is a solution to

x2 = q mod p.
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2.3 Random walks

Random walks model many natural phenomena and have been studied extensively in

various settings. We focus on random walks on finite abelian groups, like the discrete

cube.

Let G be a finite abelian group, and let S ⇢ G be a symmetric set (that is, g 2 S i↵

g�1 2 S) that generates G (that is, every g in G can be expressed as word in S). The

Cayley graph Cay(G,S) defined by S on G has vertex set G and its edges are of the

form {g, sg} for s 2 S. It is an undirected graphs since S is symmetric.

A random walk on Cay(G,S) with initial distribution p is a sequence X
0

, X
1

, X
2

, . . .

of random elements of G so that X
0

⇠ p and X
t+1

is a random neighbour of X
t

, chosen

independently of previous choices. If X
0

is chosen at random according to a distribution

p
0

on G then the distribution p
1

of X
1

can be written as

p
1

(g) =
X

h⇠g

1

|S| · p0(h),

where here h ⇠ g denotes1 that {h, g} is an edge in Cay(G,S). There is therefore a

stochastic (symmetric) matrix

M =
X

s2S

1

|S|Ms

,

where M
s

is the permutation matrix s defines that we already saw, so that

p
1

= Mp
0

.

In general, for all t � 0, the distribution of X
t

is

p
t

= M tp
0

.

We can use harmonic analysis to understand properties of this random walk. Write

p =
X

�2 ˆ

G

p̂(�)�.

Thus,

p
t

= M t

0

@
X

�2 ˆ

G

p̂(�)�

1

A =
X

�2 ˆ

G

�t
�

p̂(�)�,

1A slight abuse of notation.
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where

�
�

=
X

s2S

1

|S|�(s) 2 R

is the eigenvalue of M that corresponds to �.

This implies e.g. that u = �
0

/|G| is the stationary distribution of the Markov chain,

i.e.,

Mu = u

since �
0

(s) = 1 for all s 2 S.

Convergence. To show that p
t

! u, we need to show |�
�

| < 1 for every � 6= �
0

.

Assuming that �
�

= 1 implies that �(s) = b 2 {1,�1} for all s 2 S. Since S generates

G, it follows that �(g) 2 {1,�1} for all g 2 G. If Cay(G,S) has a cycle of odd length

d then

1 = �(1) = �(s
1

s
2

· · · s
d

) = bd,

which means that b 6= 1, a contradiction. Contra-positively, if the graph has a cycle of

odd length (i.e. it is not bipartite) then all nontrivial eigenvalues have absolute values

smaller than one which means that the coe�cient of � 6= �
0

in p
t

tends to zero, and so

p
t

tends to u.

When the graph is on the other hand bipartite, it may be the case that p
t

does not

converge. Indeed, if p
0

is the uniform distribution on one of the parts of the graph, then

p
1

is uniform on the other part, p
2

on the first part and so forth (this is called a periodic

chain).

Mixing times. A basic property of a random walk its mixing time. There are

several variants of it, and we focus on the L
2

version of it:

T (✏; p) = min{t � 0 : kp
t

� uk2
2

 ✏/|G|}

and

T (✏) = max{T (✏; p) : p},

where the norm is according to the normalised inner product on G. Sometimes, we may

know �(s) for s 2 S. In such cases, we may obtain bounds on the nontrivial eigenvectors

and on the mixing time.

The discrete cube. Take for example the discrete cube. That is, the Cayley graph

of G = Zn

2

with S = {e
i

: e 2 [n]} where e
i

is the i’th unit vector. We already know the

characters of G:

�
y

(g) = (�1)
P

i2[n] yigi .
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The eigenvalues of M are therefore

�
y

=
X

i2[n]

1

n
(�1)yi = |{i : y

i

= 0}|� |{i : y
i

= 1}| = n� 2|y|,

where |y| is the hamming weight of y (the number of ones in it). The largest nontrivial

eigenvalue of M is thus 1� 2/n, which implies that for every p,

kp
t

� uk2
2

=
X

� 6=�0

|bp
t

(�)|2

=
X

� 6=�0

|�t
�

p̂(�)|2

 (1� 2/n)tkp� uk2
2

 (1� 2/n)t.

So, T (✏) is at most order n(n + log(1/✏)) which is poly-logarithmic in the size of the

graph.

As we have seen before if |�
�

|/|S| < 1 for all nontrivial � then the random walk

on H converges to a uniform element of G. If |�
�

|/|S| < 0.9 for � 6= �
0

then this

convergence is exponentially fast, and such constant-degree regular graphs are called

expanders (every set has a large boundary in such regular graphs). An exercise is to

show that e.g. Cay(G,S) for |S|  6 and |G| large is not an expander (G is abelian).
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2.4 Error correcting codes

Error correction codes are very useful objects that allow communication in noisy channels

and are also related to many other questions concerning groups, geometry and more. A

di↵erent point of view of the following discussion is as a spectral approach to geometry

(an idea that may deserve its own part in the course).

In this part, we study limitations of such codes, following [McEliece-Rodemich-

Rumsey-Welch, Navon-Samorodnitzky]. The approach uses harmonic analysis, and we

take a more general points of view (instead of Zn

2

we look at general groups).

Let G be a finite group, let S ⇢ G be a generating and symmetric, and let H =

Cay(G,S). We are interested in the geometry of H.

Definition 5. A set C ⇢ G is a code with distance d if for every c 6= c0 in C,

dist(c, c0) � d,

where dist is graph distance in H.

The definition of a code is clear: When we are given a point g 2 G that we know is

a “noisy” version of some c 2 C, if the distance is large then we can recover the correct

c.

The goal is to find codes C that are as large as possible with as large as possible

distance. The meaning of large is typically measured by its asymptotic rate

⇢(C) =
log

2

|C|
log

2

|G| .

Roughly, it measures the amount of information C contains, compared to the length

of communication needed. (elements of G can be described using order log
2

|G| bits).
There is obviously a tradeo↵ here. The following is called the sphere-packing bound: If

we denote

B = B
d/2

= {g 2 G : dist(g, 1) < d/2},

the H-ball of radius (d� 1)/2 around 1 2 G, then

|C||B|  |G|,

since cB \ c0B = ; for all c 6= c0 in C. The size of B
d/2

of course increases as d increases,

so as d increases, the size of a code must decrease.

If the group G is the discrete cube, then there is a natural inner product defined

on G. For general groups G, we use the dual group (for the discrete cube there is a

standard identification between G and Ĝ).
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Definition 6. The dual code2 of a code C ⇢ G is C? ⇢ Ĝ defined as the set of characters

� so that �(c) = 1 for all c 2 C. The dual distance of C with respect to S? ⇢ Ĝ is the

distance of C? in Cay(Ĝ, S?).

Consider G = Zn

2

for example. It is natural to look for linear (i.e. subgroup) codes

C of large distance. The dual code C? is in this case the dual subspace of C as well.

A reasonable choice in this case is S? = S = {e
i

}, the standard basis. Then, the dual

distance is the distance of C? as a code in the discrete cube itself.

Duality and subgroups. When C is a subgroup (for the discrete cube, a linear

code),

|c1
C

(�)|2 = 1

|G|2
X

c,c

02C

�(c)�(c0�1) =
|C|
|G|2

X

c2C

�(c) =
|C|
|G|2

c1
C

(�),

which implies that

c1
C

(�) =
|C|
|G|21C

? .

Spectral aspects of sets. Denote by M the adjacency matrix of the Cayley graph

H. We know that Ĝ are the eigenvectors of M . We in fact have a formula for the

eigenvalues:

�
�

=
X

s2S

�(s).

It will be useful to associate a spectral value to a set B ⇢ G:

�
B

= max {|hMf, fi| : f : B ! C, kfk
2

= 1} .

A di↵erent way to view �
B

is as follows. Considering the subgraph H
B

of H induced

on the elements of B, and let M
B

be its adjacency matrix. Thus, �
B

is the maximal

eigenvector of H
B

, with corresponding eigenvector f
B

. The Perron-Frobenius theorem

tells us that �
B

� 0 and that the entries of f
B

are nonnegative.

It will also be useful to measure the spectral gap of the dual of a set with respect to

the Cayley graph. For C ⇢ G, denote

�?(C) = max{|�
�

| : � 2 C?,� 6= �
0

}.

The main theorem we shall discuss is:

2Not to be confused with Ĉ, the Fourier transform of the characteristic function of C.
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Theorem 7. Let C ⇢ G be a subgroup with dual spectral value �?(C). Let B ⇢ C be a

set of spectral value �
B

. Then,

|B · C| � |G|�B � �?(C)

|S| .

In words, if B has a large spectral value and C has a small dual spectral value then

the cosets of C defined by B contain most of G. In some sense, this shows that B and C

are highly non-similar. Before proving the theorem, we give an example and preliminary

results in harmonic analysis.

Example: the cube. We give an example from G = Zn

2

over the discrete cube. Let

C be a linear code in G of distance d. This means that all points in C are far away from

each other. So if B is a hamming ball of small radius then BC will be much larger than

C. The theorem tells use for which radius BC is almost all of G.

Lemma 8. Let B = B
r

be a hamming ball of radius r in the discrete cube. Then,

�
B

� 2
p

r(n� r)� o(n).

The proof shall be a guided exercise.

The last ingredient is a bound on the dual spectral value of C?, when C has distance

d. Since the dual of C? is C, the Fourier spectrum of 1
C

? is supported on C. The

eigenvalue of �
y

is n� 2|y|. Thus,

�?(C?)  n� 2d.

We deduce that for r = n/2�
p

d(n� d) + o(n), denoting d = �n for fixed small � > 0,

n|C?B| � 2n(n
q

(1� 2
p
�(1� �) + o(1))(1 + 2

p
�(1� �)� o(1))� o(n)� n+ 2d)

� 2n(n
p

1� 4�(1� �) + o(1) + o(n)� n+ 2d)

� 2n(n(1� 2�(1� �) + o(1))� o(n)� n+ 2d),

or

|C?||B| � |C?B| � 2n(2� � o(1)).

Since |C||C?| = 2n,

|C|  |B|
2� � o(1)

.

Standard estimates show

|B| ⇡ 2nH(r/n),
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where here H is the entropy function H(⇠) = �⇠ log
2

(⇠) + (1 � ⇠) log
2

(1 � ⇠). The

asymptotic rate of C with a given relative distance � > 0 is therefore at most

⇢(C)  H(1/2�
p
�(1� �)).

This bound is called the first linear programming bound for linear codes. Compare this

to the sphere packing bound

⇢(C)  1�H(�/2).

Plotting these function we see that for small � the sphere packing bound is better than

the MRRW bound, but for say � > 0.12 the MRRW bound becomes better.

Convolution. The space C[G] is in fact a ring. Multiplication in it is called con-

volution and is defined naturally if we formally think of f 2 C[G] as f =
P

g2G f(g)g.

That is,

(f ⇤ h)(g) =
X

g

02G

f(g0)h(g0�1

g).

Another useful perspective concerns the matrix representation of the group algebra.

Every f 2 C[G] defines a matrix

M
f

=
X

g2G

f(g)M
g

and the map f 7! M
f

is invertible. In addition,

M
f

M
h

= M
h

M
f

= M
f⇤h

and

M
f

h = f ⇤ h,

where we think of f ⇤ h as a column vector.

A key property of the Fourier transform is that convolution translates to point-wise
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multiplication:

\(f ⇤ h)(�) = hf ⇤ h,�i

= E
g

X

g

02G

f(g0)h(g0�1

g)�(g�1g0)�(g0�1)

=
X

g

02G

f(g0)�(g0�1)E
g

h(g0�1

g)�(g�1g0)

=
X

g

02G

f(g0)�(g0�1)ĥ(�)

= f̂(�)ĥ(�).

Proof of Theorem 7. By Cauchy-Schwartz, if F : U ! C then

|F̂ (�
0

)|2 = |E
g

F (g)1
U

(g)|2  kFk2
2

· |U |
|G| .

Our goal is proving a lower bound on the size of

U = B · C = {bc : b 2 B, c 2 C}.

Define F : U ! C as follows. Let f = f
B

be the eigenvector of M
B

of eigenvalue � = �
B

.

Define

F =
X

c2C

M
c

f,

which can also be written as

F = 1
C

⇤ f.

The support of F is on element of the form cb for c 2 C and b 2 B and so indeed

F : U ! C.

Since G is abelian, and computation is nonnegative,

MF =
X

c2C

M
c

Mf � �
X

c2C

M
c

f = �F,

where here � means entry-wise (since M has nonnegative entries). Thus,

�kFk2
2

 hMF,F i =
X

�

�
�

|F̂ (�)|2 = |S||F̂ (�
0

)|2 +
X

� 6=�0

�
�

|F̂ (�)|2.
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Recall

F̂ (�) = c1
C

(�) · f̂(�).

Since C is a subgroup, the support of c1
C

is contained in C?, so

|S| |F̂ (�
0

)|2

kFk2
2

� ��
P

� 6=�0
�
�

· |c1
C

(�)|2 · |f̂(�)|2

kFk2
2

� ��
P

�2C?
:� 6=�0

�
�

· |F̂ (�)|2

kFk2
2

� �� �?(C).

To summarise, we have seen applications of harmonic analysis in (finite) geometries

and error correcting code. A key idea was assigning spectral information to sets and

using analysis instead of combinatorics.
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2.5 Codes and k-wise independence

As mentioned, it is useful to have small support distributions that are pseudorandom.

An example is k-wise independent distributions, which are useful e.g. in derandomization

of algorithms. Here we restrict our attention to G = Zn

2

.

Definition 9. A k-wise independent distribution p on Zn

2

is so that for every S ⇢ [n],

the marginal of p on coordinates in S is uniform.

The uniform distribution on G is n-wise independent. The uniform distribution on

��1

(1,1,1,...,1)

(0)

is (n � 1)-wise independent. There are interesting constructions of such distributions

and it is also known that they can not have too small support.

An observation is that this notion can be formalised in analytic terms as well, which

gives a correspondence between linear codes and k-wise independent distributions sup-

ported on linear spaces.

First, every linear k-wise independent distribution yields a linear code of distance

greater than k. If p is supported on a subgroup C of Zn

2

and is k-wise independent then

for every y so that 0 < |y|  k,

p̂(�
y

) = û(�
y

) = 0.

That is, the dual C? of C, which is also a subgroup, is actually a code of distance at

least k.

Second, if C? is a linear code of distance d, then C = C??
is a subgroup so that for

all 0 < |y| < d,

c1
C

(�
y

) = 0.

Recalling the u is the only distribution that is 0-biased, we conclude that the uniform

distribution on C is (d� 1)-wise independent.

This correspondence can also be proved without using hormonic analysis, but har-

monic analysis is useful if we replace sets with functions, and perfect k-wise independence

to close to being k-wise independent.
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2.6 Additive combinatorics

We now explain the main ideas in the proof of Roth’s theorem. Roth’s theorem states

that a subset A of [n] of constant density contains 3-term arithmetic progression, that is,

if |A| � �n for fixed � > 0 and n large then there are a, b, c 2 A so that a+ c = 2b. This

theorem can be proved using harmonic analysis. Gower’s found a proof of the much more

general Szemeredi’s theorem using harmonic analysis (the case of k-term progressions).

Gower’s proof is too complicated for us to go over here.

A key idea in proving Roth’s theorem is energy / density increment. The idea is to

use harmonic analysis to distinguish between two cases.

1. The set A is pseudorandom (similarly to the notion of ✏-biased sets), and then A

behaves like a random set and specifically it has 3-term progressions.

2. The set A is not pseudorandom. Then it has a high Fourier coe�cient, which

means that we can go to a smaller universe (the kernel of the character) and slightly

increase the relative size of A.

The point is that step 2 can not happen too many times, which means that step 1

will eventually occur.

Before moving to prove the theorem, recall that in the exercise you have seen that

there is a subset of [n] of size n1�o(1) that contains no 3-term progressions. This con-

struction is due to Behrend, and it is related to several other interesting constructions.

The first is of a graph with many edges and relatively few triangles. The second is

related to the number-on-forehead model in communication complexity and to cylinder

intersections (cylints).

How to construct a graph with many edges are few triangles? It is a 3-partite graph

with parts V
1

, V
2

, V
3

each of size 2n define by a Behrend subset X of [n] of size n1�o(1).

Edges between V
1

, V
2

are of form {v
1

, v
1

+ x} for x 2 X, between V
2

, V
3

of the form

{v
2

, v
2

+ x} for x 2 X, and between V
1

, V
3

of the form {v
1

, v
1

+ 2x} for x 2 X. The

point is that v
1

, v
2

, v
3

is a triangle i↵ v
2

= v
1

+ x, v
3

= v
2

+ x0 and v
3

= v
1

+ 2x00 which

means

x+ x0 = 2x00.

This implies that x = x0 = x00. So every edges supports exactly one triangle, but still

the number of edges is |V |2�o(1).

The number-on-forehead model in communication complexity models a certain kind

of communication. There are three players. Each player i has an input X
i

written on

her forehead, so she can not see X
i

but can see the other two inputs. The parties wish to

compute f(X
1

, X
2

, X
3

). To do so they communicate. We are interested in understand

the most e�cient way to achieve this goal. This is related to many other topics, like

circuit and proof complexity. Every protocol corresponds to a disjoint union of cylints,

which we soon define.
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Let F : [n]3 ! R be a 3-dimensional tensor. A well-known notion is the tensor

rank of F , which is a generalisation of matrix-rank. A tensor of rank one is of the

form F (x, y, z) = F
x

(x)F
y

(y)F
z

(z). The tensor rank of F is the minimal r so that

F =
P

i2[r] Fi

with F
i

of rank one.

A tensor of rank one corresponds to a combinatorial cube. The structure of cube

is quite straightforward (still computing the tensor rank is a di�cult task (it is NP-

hard [Hastad])). For example, if F is a cube of measure pn3 =
P

x,y,z

F (x, y, z) with

F (x, y, z) 2 {0, 1} then there is a choice for a plane, say the x � y plane, so thatP
z

F (x
0

, y
0

, z) is small, at most p1/3n. This is of course tight.

One may wonder if a similar geometric property holds for cylints as well. A cylint F

is of the form

F (x, y) = F
x

(y, z)F
y

(x, z)F
z

(x, y).

It is a product/intersection of three cylinders, each over one of the three planes. The

geometry of cylints is quite complicated. For example, Behrend’s construction shows

that there is a cylint of measure n1+o(1) so that for every point in every plane, the line

over the point contains at most one point in F . Roughly, it is a one-dimensional shape

(measure-wise) with projection that is of density is almost full on each of the three

planes.

Back to the proof of Roth’s theorem. Let A ⇢ [n] of size |A| = �n. Our goal is to

show that if A does not contain 3-term progressions (i.e. a+a0�2a00 = 0 for a, a0, a00 2 A

implies a = a0 = a00) then there is an interval [0, n0] for n0 large and c = c(�) > 0 so that

|A \ [n0]|/n0 = � + c.

This can clearly happen at most 1/c times. We shall not give the full proof here, but

only the first step of it (of the two). (Instead of the interval [n0] we shall have an a long

arithmetic progression, which is good enough.)

Measure the amount of 3-terms progressions in A:

µ = E
g,g

02G1A

(g)1
A

(g + g0)1
A

(g + 2g0).

Since A contains no 3-AP,

µ = |A|/|G|2.

It will be useful to generalise this

⇤(f, h, r) = E
g,g

0f(g)h(g + g0)r(g + 2g0).
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In the Fourier basis:

⇤(f, h, r) =
X

�1,�2,�3

E
g,g

02G bf(�
1

)�
1

(g)bh(�
2

)�
2

(g + g0)br(�
3

)�
3

(g + 2g0)

=
X

�1,�2,�3

bf(�
1

)bh(�
2

)br(�
3

)E
g,g

02G�1

(g)�
2

(g)�
2

(g0)�
3

(g)�
3

(2g0)

=
X

�1,�2,�3

bf(�
1

)bh(�
2

)br(�
3

)E
g

�
1

(g)�
2

(g)�
3

(g)E
g

0�
2

(g0)�
3

(2g0).

The only terms that contribute are for �
2

(g) = �
3

(�2g) and so �
2

(g)�
3

(g) = �
3

(�g)

which means �
1

(g) = �
3

(g). Thus, using Parseval,

⇤(f, h, r) =
X

�3

bf(�
3

)bh(�
3

(�2·))br(�
3

)  kbrk1kfk
2

khk
2

.

This clearly holds for any permutation of f, h, r.

We started with that µ is very small. This is not good for us since we want a lower

bound on the Fourier coe�cients. Write

1
A

= f + ��
0

.

Write ⇤(1
A

,1
A

,1
A

) as a sum of eight terms. One of them is

⇤(��
0

, ��
0

, ��
0

) = �3,

which means that one of the other terms is at least �3/8, since ⇤(1
A

,1
A

,1
A

) is too small

to matter. Assume (e.g.)

⇤(��
0

, f, f) � �3/8.

Notice that

kfk
2

, k1
A

k
2

� ⌦(�1/2).

Hence, there is � so that

| bf(�)|� � ⌦(�3),

so

|( \1
A

� ��
0

)(�)| � ⌦(�2).

This is almost what we want. The above means that A is not fully balanced on �. If

the level sets of � were intervals, this would mean that A is not balanced on all intervals.

The full proof, which we do not include here, follows by showing that this information

about characters provides information about a long interval or a long arithmetic pro-

gression. The intuition is that characters are well correlated with intervals/arithmetic
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progressions.
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Chapter 3

Representations

We have seen several applications of harmonic analysis on abelian groups. We now move

to discuss a generalisation to general groups. We shall focus on finite groups, but the

ideas can be applied in a more general context.

3.1 Basic definitions

Again, we start by studying C[G] for a general finite group G. We will not be able to

diagonalise it, but we shall do the best we can. We know that if G acts on X then G

acts on C[X] by

g(f(x)) = f(g�1(x)).

There is a thus a group homomorphism fromG to the invertible linear transformations on

C[X]. For a vector space V , denote by GL(V ) the set of invertible linear transformations

on V .

Definition 10. A representation ⇡ of G is a group homomorphism ⇡ from G to GL(V ).

Here we consider only finite dimensional spaces. We shall focus on V over C, but a
similar and more technical discussion can be made over other fields (not all statement

hold). It will sometimes be convenient to consider matrix representations, which depend

on a choice of a basis for V . Then, ⇡
g

is d⇥ d complex matrix where d = dim(V ).

Examples: trivial representation, regular representation, characters of abelian groups,

and sign of permutations.

3.2 Irreducibles and decomposition

The first goal of our discussion will be finding the building blocks of all representations

of G. Similarly to the way characters decompose C[G] in the abelian case. The building

33



34 CHAPTER 3. REPRESENTATIONS

blocks will be called irreducible representations. Irreducible representation are to repre-

sentation what prime numbers to integers are. We shall see that any finite group has a

finite list of building block (up to equivalence).

An eigenspace of a matrix M is invariant under the action of M .

Definition 11. A subspace U of V is G-invariant if ⇡
g

(U) ✓ U for all g 2 G.

Definition 12. A representation ⇡ from G to V is irreducible if the only G-invariant

subspaces of V are trivial (i.e. {0} and V ).

The space V can be decomposed as a direct sum of minimal G-invariant subspaces

(details follow).

Theorem 13 (Maschke’s theorem). Let ⇡ be a representation of G on V , and let W be

a G-invariant subspace of V . Then, there is a complement W
0

of W that is also stable

under G.

Proof. A key idea is to symmetrize objects. Write V = W �W 0 for some W 0. Denote

by p the projection from V to W . Define

p
0

=
1

|G|
X

g2G

⇡
g

p⇡
g

�1 .

We have

p
0

(V ) ⇢ W.

For w 2 W , we have

p
0

(w) = w.

The map p
0

is also a projection from V to W . By symmetry,

⇡
g

p
0

= p
0

⇡
g

,

for all g 2 G. Let W
0

be the kernel of p
0

. Thus, for all w
0

2 W
0

,

0 = ⇡
g

(p
0

(w
0

)) = p
0

(⇡
g

(w
0

)).

So ⇡
g

(W
0

) ⇢ W
0

for all g 2 G.

Corollary 14. Every representation is a direct sum of irreducible representations.

Proof. Let ⇡ : G ! GL(V ). If V is irreducible, we are done. Otherwise, let W be a

nontrivial invariant subspace of V . Let W
0

be its complement by the theorem above.

We have

V = W �W
0
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with W,W
0

are representation of G of smaller dimension. Continue by induction.

Weyl’s trick. The case of unitary representations (when the image is contained is

the set of unitary maps in GL(V ) so inner products are preserved): The symmetrisation

above can be done also to unitarize representations. If hv, ui is an inner product over

V , then

hv, ui
0

=
1

|G|
X

g2G

h⇡
g

v, ⇡
g

ui

is a new inner product over V for which ⇡ is unitary.

We aim at classifying all irreducible matrix representations. There are of course

infinitely many since we can choose the basis arbitrarily.

Definition 15. Two representation ⇡, ⇡0 from G to GL(V ) are equivalent if there is

h 2 GL(V ) so that ⇡h = h⇡0.

Let V be a G-space (that is, there is a representation ⇡ : G ! GL(V )). We now

know that we can decompose V as

V =
M

a

m
⇡aV⇡a .

The decomposition is to non-equivalent irreducible representations of G, where m
⇡a is

the number of copies of representations that are equivalent to ⇡
a

.

3.3 Schur’s lemma

In general matrices do not commute. There are however matrices that do commute.

Scalar matrices (homotheties) commute with all other matrices. Schur’s lemma says

that this is the only option for irreducible representations.

Lemma 16. Let ⇡ : G ! GL(V ) be an irreducible representation. Let A : V ! V be

a linear map that commutes with G (such maps are called intertwiners). Then, A = �I

for some � 2 C.

The lemma is false if ⇡ is reducible (e.g. abelian groups). We learn that the only

irreducible representations of an abelian group are 1-dimensional: If ⇡ is irreducible,

then every ⇡
h

is an intertwiner, which means that ⇡
h

= �
h

I. Since ⇡ is irreducible,

span(v) = V for all v 6= 0.

We prove the lemma over algebraically closed fields but there are analogs for other

fields as well.
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Proof. Let � be an eigenvalue of A, and let V
�

be the corresponding subspace. Thus,

for v 2 V
�

,

A⇡
g

v = ⇡
g

Av = �⇡
g

v.

This means that V
�

is invariant so it is either 0 or V .

We may deduce the following.

Lemma 17. Let ⇡
1

, ⇡
2

be two irreducible representation of G. If ⇡
1

, ⇡
2

are not equivalent

then the space of intertwiners is {0}. If ⇡
1

= ⇡
2

then the space of intertwiners is one-

dimensional.

Proof. Let A 2 Hom
G

(V
1

, V
2

). Thus, ker(A) is a trivial subspace of V
1

and im(A) is a

trivial subspace of V
2

. So, either A = 0 or A is injective and surjective (invertible).

Therefore, if V
1

, V
2

are not isomorphic then Hom
G

(V
1

, V
2

) = {0}. Otherwise, they

are isomorphic. Let A
1

, A
2

be invertible linear maps from V
1

to V
2

that commute with

G. Let A = A
1

A�1

2

. Thus, A 2 End
G

(V, V ) which means that A is a homothety, and

A
2

= �A
1

.

3.4 Orthogonality of matrix entries

Assume V is equipped with an inner product. Given v, u 2 V , define ⇡
v,u

: G ! C by

⇡
v,u

(g) = h⇡
g

(v), ui.

This is a generalisation of matrix entries. Recall the inner product on C[G]:

hf, hi = 1

G

X

g2G

f(g)h(g).

Theorem 18. Let ⇡
1

, ⇡
2

be two unitary irreducible representations of G. For all relevant

v
1

, u
1

2 V
1

and v
2

, u
2

2 V
2

,

h(⇡
1

)
v1,u1 , (⇡2)v2,u2i =

(
0 ⇡

1

is not isomorphic to ⇡
2

,
1

dim(V1)
hv

1

, v
2

ihu
1

, u
2

i ⇡
1

= ⇡
2

.

This means that the matrix entries of two non-isomorphic representations are or-

thogonal, and that the matrix entries of a given representation are orthonormal (with a

given normalisation).

Proof. For fixed u
1

, u
2

, the l.h.s. is a bilinear map on (v
1

, v
2

) which is G-invariant. There

is thus an A 2 Hom
G

(V
1

, V
2

) so that l.h.s. is equal to hAv
1

, v
2

i. Schur’s theorem implies

that if V
1

, V
2

are not isomorphic then A = 0.
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Assume ⇡ = ⇡
1

= ⇡
2

. The l.h.s. is equal to hA
u1,u2v1, v2i for A

u1,u2 = �
u1,u2I.

The map (u
1

, u
2

) 7! �
u1,u2 is also bilinear and G-invariant. So, by Schur’s theorem,

�
u1,u2 = �hu

1

, u
2

i. It remains to compute �. Let e
1

, . . . , e
d

be the standard basis. Thus,

for all i 2 [d] and v 2 V ,

h⇡
v,ei , ⇡v,eii = �hv, vi.

Sum over i, since ⇡ is unitary,

hv, vi = 1

G

X

g2G

X

i2[d]

��h⇡
g

(v), e
i

i
��2 =

X

i2[d]

h⇡
v,ei , ⇡v,eii = �dhv, vi.

3.5 Characters

Instead of studying C[G], it will be somewhat easier to study C(G), the space of class

functions. That is, the space of complex functions on G that are constant on conjugacy

classes (for all t, g 2 G, we have f(tgt�1) = f(g)). Over fields of characteristic zero this

is almost equivalent to C[G] ([Frobenius] initiator). Over fields of finite characteristic

the discussion is more complicated ([Brauer]).

Recall that the conjugacy classes of G are equivalence classes, which means that they

partition G. The dimension of C(G) is therefore the number of conjugacy classes of G.

A basic useful fact is that matrix trace is independent of conjugation. That is, trace

does not depend on choice of basis. Let A be a n⇥ n matrix. Its trace is defined as

Tr(A) =
X

i

A
i,i

.

It is a linear map. The following property is very useful:

Tr(AB) = Tr(BA) =
X

i,j

A
i,j

B
j,i

.

This means e.g. that it does not depend on choice of basis: If U is invertible then

Tr(UAU�1) = Tr(U�1UA) = Tr(A).

Definition 19. Let ⇡ be a matrix representation of G. The corresponding character

�
⇡

: G ! C is defined as

�
⇡

(g) = Tr(⇡
g

).
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Denote by bG the set of irreducible characters of G.

This set will not be a full basis for C[G] as in the abelian case but an important

subset of it. It is a basis for C(G) (as we shall see).

Proposition 20 (Basic properties). For all t, g 2 G:

• If � is a character of ⇡ of degree (dimension) d then �(1) = d.

• �(g) = �(g�1).

• Class functions: �(tgt�1) = �(g).

Proof. First, �(1) = Tr(I) = d. Second, ⇡
g

has finite order which means that it has n

eigenvalues of absolute value one. So,

�(g) =
X

i

�
i

=
X

i

��1

i

= �(g�1).

Third, by the above property of trace,

Tr(⇡
t

⇡
g

⇡
t

�1) = Tr(⇡
g

).

Proposition 21 (Characters and representation).

• If ⇡
1

, ⇡
2

are irreducible representations then h�
⇡1 ,�⇡2i 2 {0, 1} and the value one

is attained i↵ ⇡
1

, ⇡
2

are equivalent.

• Given an irreducible representation ⇡
1

, and a representation ⇡
2

, denote by m
⇡1(⇡2)

the number of copies of ⇡
1

in ⇡
2

. Then h�
⇡1 ,�⇡2i = m

⇡1(⇡2).

• If ⇡ = �
a

m
a

⇡
a

with ⇡
a

irreducible then k�
⇡

k2 =
P

a

m2

a

. Specifically, k�
⇡

k = 1 i↵

⇡ is irreducible.

• ⇡
1

, ⇡
2

are equivalent i↵ �
⇡1 = �

⇡2.

Proof.

• Assume ⇡
1

, ⇡
2

are irreducible representations. Then,

h�
⇡1 ,�⇡2i =

1

|G|
X

g

Tr(⇡
1

(g))Tr(⇡
2

(g))

=
X

i,j

1

|G|
X

g

(⇡
1

(g))
i,i

(⇡
2

(g))
j,j

.
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If ⇡
1

, ⇡
2

are not equivalent then for every i, j this is zero due to entry-wise orthog-

onality. If ⇡
1

, ⇡
2

are equivalent then by the orthogonality lemma

=
X

i

1

dim(V
1

)
= 1.

• If ⇡
2

= �
a

m
a

⇡
a

with ⇡
a

irreducible then �
⇡2(g) =

P
a

m
a

�
⇡a . The claim holds by

previous bullet.

• If ⇡
1

, ⇡
2

are equivalent then clearly �
⇡1 = �

⇡2 . In the other direction, if �
⇡1 = �

⇡2

then for all irreducible ⇡
a

we have m
a

(⇡
1

) = m
a

(⇡
2

) which implies the claim.

3.6 Structure of regular representation

We conclude that the regular representation contains all irreducible representations. In

fact, we also know the multiplicities are the dimensions.

Theorem 22. Let ⇢ be the regular representation of G. Let ⇡ be an irreducible repre-

sentation of G. Then m
⇡

(⇢) = dim(⇡).

Proof.

m
⇡

(⇢) = h�
⇡

,�
⇢

i = 1

|G|
X

g

Tr(⇡
g

)Tr(⇢
g

) = Tr(⇡
1

) = dim(⇡),

where here 1 2 G.

Corollary 23. Let {⇡
a

} be the set of (non-equivalent) irreducible representations of G.

Then |G| =
P

a

dim2(⇡
a

).

Proof. Counting dimensions in two ways.

Corollary 24. If ⇡ is an irreducible representation of G then dim(⇡) < |G|1/2.

3.6.1 Class functions

The following lemma shows that the characters form a basis to the space of class func-

tions. We know it is an orthonormal set (and hence independent), and we prove it is

spanning.
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Lemma 25 (Characters are basis to class functions). If f is a class function so that

hf,�i = 0 for all � 2 bG then f = 0.

Proof. Fix an irreducible ⇡. Define a linear map A = A(f, ⇡) by

A =
1

|G|
X

g

f(g)⇡
g

.

It is an intertwiner: for every g0 2 G,

⇡
g

0A⇡
g

0�1 =
1

|G|
X

g

f(g)⇡
g

0
gg

0�1 =
1

|G|
X

g

f(g0�1

gg0)⇡
g

= A,

since f is a class function. We thus conclude that

A = �I.

Since f is orthogonal to characters, � = 0.

Now, let ⇡ be the regular representation of G. We know that
P

g

f(g)⇡
g

= 0 which

implies that f = 0.

Corollary 26. The number of irreducible characters is equal to the number of conjugacy

classes.
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3.7 Applications

3.8 Quasi-random groups

We start with an application to additive combinatorics/group theory due to Gowers.

Babai and Sos asked whether for every finite group G, there is a sum-free subset S ⇢ G

of size |S| > c|G|, c > 0 a constant. That is, for all x, y, z 2 S we have xy 6= z.

Motivation for studying this question comes from a result of Erdos, who proved it for Z
and basically all abelian groups.

Erdos actually proved that for allX ⇢ Z of size n, there is a sum-free subset S ⇢ X of

size at least n/3. Here is the proof. Let p be the smallest prime so that X ⇢ [�p/3, p/3].

For any r 2 Z so that r 6= 0 mod p, the sets Y and rY are sum-free together modulo

p. The set T = [p/3, 2p/3] \ Z
p

is sum-free modulo p. Its fraction of Z
p

is 1/3 which

means that there is r so that Y 0 = rX \ T is large |Y 0| � n/3. Set Y = r�1Y 0.

Gowers shows that the answer to this question is negative. Since it is true for abelain

groups, the examples should be far from abelian. One should look at simple non-abelian

group. Representation theory allows to measure the “distance” from abelian group. All

irreducible representations of abelian groups has dimension one. One should look at

groups for which all nontrivial irreducible representations have large dimension.

Definition 27. A group G is D-quasi-random if every non-trivial irreducible represen-

tation of G has dimension at least D.

A well-known example for such a group is G = PSL
2

(p), the group of 2⇥ 2 matrices

over F
p

of determinant one, modulo the normal subgroup {I,�I}. It is a simple group.

Moreover, Frobenius proved that if ⇡ is an irreducible representation of G then the

dimension of ⇡ is at least (p � 1)/2. We shall not prove this fact here (a classification

of all finite simple groups is known). This size of G is roughly p3, which means that all

irreducible representation have dimension at most p3/2.

(In the exercise (http://tx.technion.ac.il/⇠yehuday/analyticMethods/ex3.pdf) we shall

see how to prove a lower bound on the dimension of irreducible representations for sim-

ple groups. The beautiful idea [Gowers] is to interpret an irreducible representation as

a code, and use volume arguments.)

3.8.1 Mixing property

The proof of the theorem relies on a spectral property of quasi-random groups some-

times called the mixing property. This means establishing a bound on the norm of

convolutions. The following theorem proved by Babai, Nikolov and Pyber summarizes
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the statement (using multiplicity in this way is sometimes called Sarnak-Xue multiplicity

argument).

The basic idea is to view convolution as a linear map, and to use representation

theory to study its spectrum, using our knowledge about the regular representation.

Theorem 28. Assume G is a D-quasi-random group that acts transitively on X. Let

µ : G ! R and f : X ! R be so that
P

x2X f(x) = 0. Then,

kµ ⇤ fk2
2

 |G|
D

kµk2
2

kfk2
2

where

(µ ⇤ f)(x) =
X

g2G

µ(g)f(g�1(x)).

Proof. Let ⇢
1

, . . . , ⇢
t

be the list of all (non-isomorphic) irreducible representations of G,

where ⇢
1

is the trivial representation. Let ⇢ be the regular representation of G. We

know that ⇢ = �
i

c
i

⇢
i

. Denote by d
i

= c
i

the dimension of ⇢
i

.

We use these properties of the regular representation to bound the relevant singular

values. First, some definitions. For a k ⇥ k complex matrix M , denote by M⇤ the

conjugate transpose of M . The matrix MM⇤ is positive semi-definite, and has k non-

negative eigenvalues �
1

� �
2

� . . . � �
k

� 0. Denote

�(M) = �
1

.

Denote

M
i

=
X

g2G

µ(g)⇢
i

(g)

for 1  i  t. After a basis change, the matrix

R =
X

g2G

µ(g)⇢(g)

is in block-diagonal form with blocks from the list M
1

, . . . ,M
t

, each M
i

has multiplicity

c
i

. Denote by Q the |G| � 1 ⇥ |G| � 1 matrix with blocks of the form M
2

, . . . ,M
t

,

after deleting from R a row and a column that correspond to the trivial representation

(c
1

= d
1

= 1). On one hand, quasirandomness implies (multiplicity method)

trace(QQ⇤) =
X

2it

c
i

trace(M
i

M⇤
i

) � D · �(Q).
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On the other hand,

trace(QQ⇤)  trace(RR⇤) =
X

g12G

X

g22G

µ(g
2

g�1

1

)2 = |G| kµk2
2

.

We conclude that

max{�(M
i

) : 2  i  t} = �(Q)  kµk2
2

|G|/D.

Finally, we use the bound on singular values to prove the theorem. Consider the

representation ⇡ of G induced by the action of G on X. After a basis change, the matrix

R0 =
P

g2G µ(g)⇡(g) can be written in block-diagonal form with blocks that are copies

of M
1

, . . . ,M
t

, each of the blocks appears in R0 with multiplicity c0
i

.

We claim that c0
1

= 1, since G acts (one-) transitively on X:

c0
1

= h�
⇡

,1i = 1

|G|
X

g2G

X

x2X

⇡(g)
x,x

=
1

|G|
X

x2X

��{g 2 G : g(x) = x}
�� = 1.

The last equality holds due to transitivity, which implies that
��{g 2 G : g(x) = x}

�� =��{g 2 G : g(x) = x0}
�� for every x, x0 in X.

Since hf,1i =
P

x

f(x) = 0 and since the all-ones vector spans the subspace corre-

sponding to the trivial representation,

kµ ⇤ fk2
2

= hR0f,R0fi  �(Q) kfk2
2

.

3.8.2 All large sets are not sum free in quasi-random groups

Gowers used that quasi-randomness implies mixing to prove the following.

Theorem 29. Let G be D-quasi-random of size n. Let A,B ⇢ G be of size |A| = an

and |B| = bn. Then

|AB| � n

✓
1� 1

Dab

◆
.

It follows that if A,B,C are of size at least cn, and D > c3 then

|(AB) \ C| � |AB|+ |C|� n � n

✓
c� 1

Dc2

◆
> 0.

This means that in G = PSL
2

(p) for example every set of size at least order p3�1/3 (⌧
|G|) is not sum-free.
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Proof. Denote

f = 1
B

� b

so
P

g

f(g) = 0 and kfk2
2

= b(1� b)n  bn. By the mixing lemma,

k1
A

⇤ fk
2

 n

D
anbn.

But

1
A

⇤ f = 1
A

⇤ 1
B

� abn.

Denote by m the size of the complement of AB. By the above, if (1
A

⇤ 1
B

)(g) = 0 then

g 62 AB and (1
A

⇤ f)(g) = �abn. Thus,

m(abn)2  n

D
anbn,

or

m  n

Dab
.
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3.9 Card shu✏ing

We now discuss mixing a deck of cards (following Bayer-Diaconis). Consider a deck of

n = 52 cards. It is interesting to understand how fast will a specific shu✏e of a deck

of cards will make it close to random. It will provide some motivation to study the

representation theory of the symmetric group.

The Gilbert, Shannon, and Reeds (GSR) model for card shu✏ing has several equiv-

alent definitions:

1. (Sequential) Cut the deck to two piles, where the size of one of the piles is

Bin(n, 1/2). Mix the two piles together so that if at some point in time one

of the (smaller) piles have A cards and the other B, then the chance of the next

card being from A is A/(A+B).

2. (Geometric) Drop n points X
1

, . . . , X
n

independently and uniformly into I = [0, 1].

Use the baker’s map X
1

7! 2X
1

mod I to get n new points Y
1

, . . . , Y
n

. Assume

X
1

< . . . < X
n

and Y
1

< . . . < Y
n

. We get a permutation on [n] by X
i

7! Y
�(i)

.

3. (Maximum entropy) Every partition of the deck to two parts and then interleaving

the two parts is equally likely (empty parts are possible).

4. (Inverse) The following random way to generate the inverse. Mark every card

{0, 1} independently and uniformly at random. Move all cards that are labelled 1

to the top of the deck.

The identity permutation has probability (n+1)/2n and all other possible permuta-

tions have probability 2�n.

It will be useful to generalise this process. Instead of cutting to 2 parts, we shall cut

is to a � 2 parts:

1. (Sequential) Cut the deck to a piles of sizes j
1

, . . . , j
a

that are distributed multi-

nomially with parameter 1/2. Mix the a piles together so that if at some point in

time the sizes are a
1

, . . . , a
j

then then the chance of the next card being from pile

i is a
i

/(a
1

+ . . .+ a
j

).

2. (Geometric) Drop n points X
1

, . . . , X
n

independently and uniformly into I = [0, 1].

Use the baker’s map X
1

7! aX
1

mod I to get n new points Y
1

, . . . , Y
n

. Assume

X
1

< . . . < X
n

and Y
1

< . . . < Y
n

. We get a permutation on [n] by X
i

7! Y
�(i)

.

3. (Maximum entropy) Every partition of the deck to a parts and then interleaving

the two parts is equally likely (empty parts are possible).
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4. (Inverse) Mark every card {1, 2, . . . , a} independently and uniformly at random.

Reorder the deck according to marks.

Claim 30. The 4 ways above to define Q are equivalent.

Proof. We shall not prove it here.

Denote by Q = Q
a

2 C[G] the probability distribution that corresponds to this shuf-

fling, for the permutation group G = S
n

. Repeating this shu✏ing process corresponds

to convolution. After k times, the distribution is Q⇤k. It can be shown that the relevant

graph is connected and aperiodic and so Q⇤k ! u when k ! 1, where u is the uniform

distribution. It is interesting to understand get a quantitative bound. We will look for

the L
1

mixing time.

Theorem 31 (Bayer-Diaconis). For a = 2,

k 4 5 6 7 8 9 10

|Q⇤k(p)� u|
1

1.00 0.92 0.61 0.33 0.16 0.08 0.04

For general n, and k = (3/2) log
2

(n) + c, they show that distance is roughly one

minus the probability that a normal gaussian gets a value larger than 2�c.

The following property is crucial. It says that the matrices Q
a

, a � 2, commute.

Moreover, Q⇤k
2

= Q
2

k .

Claim 32. An a-shu✏e followed by a b-shu✏e is equivalent to an ab-shu✏e. That is,

Q
a

⇤Q
b

= Q
ab

.

Proof. Follows from the geometric description.

It thus su�ces to understand Q
a

for general a. The following definition is useful:

Definition 33. A rising sequence in � is a maximum interval i, i + 1, . . . , i + k � 1 of

[n] so that ⇡(j) < ⇡(j + 1) for all j in the sequence.

Example: 716248359 has four rising sequences: 123, 45, 6, and 789. They are basic

concepts in some magic tricks (see page 297 in [BD]). They form a partition of the

universe.

Claim 34. If � has r rising sequences then Q
a

(�) =
�
a+n�r

n

�
/an.

Proof. The number of rising sequences r is at most a. The r rising sequences in � surely

come from cuts. The rest a � r cuts must be chosen. We think of them as “markers”

between n+ a� r objects. The total number of choices is thus
�
n+a�r

n

�
and the number

of a-shu✏es is an.



3.9. CARD SHUFFLING 47

Corollary 35. For every permutation �, we have Q⇤k
2

(�) =
�
2

k
+n�r

n

�
/2kn where r is the

number of rising sequences in �. Specifically,

��Q⇤k
2

� u
��
1

= (1/2)
X

r

k(r)

����

✓
2k + n� r

n

◆
/2kn � 1/n!

���� ,

where k(r) is the number of permutation with r rising sequences.

The numbers k(r) are the Eulerian numbers [Stanley]. Finding the asymptotic be-

haviour of the mixing time requires elaborate calculations.

3.9.1 Descends

We briefly discuss a connection to descend theory, studied by Stanley and others. It has

connections to shu✏ing, juggling and more.

A permutation � has a descent at i if �(i) > �(i+ 1). By D(�) ✓ [n� 1] we denote

the set of descends of �. Solomon observed that descends yield a sub algebra of C[S
n

].

For S ✓ [n� 1], denote

a
S

=
X

�:D(�)=S

� 2 C[S
n

].

Solomon showed that

a
S

a
T

=
X

R

cR
S,T

a
R

for cR
S,T

2 Z. This is a topic by itself that we shall not address here.

We may consider a more symmetric algebra generated by A
0

, . . . , A
n�1

defined by

A
0

= id and

A
i

=
X

�:|D(�)|=i

�.

This algebra is closely related to GSR shu✏ing. The first step is to note that the set

of permutations � with D(�) = {i} is exactly the set of permutations ��1 obtained by

choosing a subset of size i from [n] and moving it to the top of the deck (except for id):

Denote by ⌧ a permutation defined by choosing J = {j
1

< . . . < j
i

} ⇢ [n] and moving it

to top. Thus, ⌧�1 preserves the order on [i] and on {i+1, . . . , n}, and switches the order

between i, i + 1, except when J = [i]. This is exactly the process done in the inverse

way to sample a GSR shu✏ing. Thus,

X

�

Q(��1)� =
n+ 1

2n
+ A

1

.

This means that repeated GSR shu✏ing corresponds to multiplication inside this algebra.
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It enjoys some interesting algebraic topology properties.
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3.10 Logrank and the symmetric group

We describe an application of representation theory to communication complexity due

to Raz and Spieker. We will start exploring the representation theory of S
n

on the way.

The setup is two party deterministic communication complexity. Let f : [n]2 !
{0, 1}. There are two parties, Alice and Bob. Alice gets a 2 [n] and bob gets b 2 [n],

and they wish to compute f(a, b). A protocol P is an exchange of bits (messages)

between Alice and Bob. The message Alice sends e.g. depend on a and on the messages

previously sent. The last bit sent in P is the function it computes. Denote by |P |(a, b)
the number of bits exchanged with inputs a, b. Denote |P | = max

a,b

|P (a, b)|. Denote

D(f) = min{|P | : P ⌘ f}.

Understanding D(f) is theoretically interesting and related to other theoretical and

practical problems. A standard way to lower bound D(f) is using matrix rank. Think

of f as a boolean n⇥n matrix M
f

. A protocol for f with complexity c yield a partitions

of the ones of the matrix to at most 2c disjoint rectangles. Thus,

D(f) � log rank(M
f

),

where rank is over say the reals. The log rank conjecture [Lovasz-Saks] states that this

is basically tight: there is c > 0 so that for all boolean f ,

D(f)  c logc rank(M
f

).

This has been a long standing open problem.

The first question is whether c can be one (at least in the exponent). The first result

refuting this option is the work of [RS] that uses representation theory of S
n

we discuss.

Later, Kushilevitz showed that c must be at least log
3

6 ⇡ 1.6 using Fourier analysis.

On a high level, the conjecture is about establishing a structure for low rank boolean

matrices. Refuting the conjecture is about finding “non trivial” low rank boolean ma-

trices. We shall see how to use representation theory to achieve this.

3.10.1 The example

In the example both Alice and Bob get permutations. So a, b 2 S
n

. The underlying

matrix is thus n!⇥ n!.

Denote by K ⇢ S
n

the set of n-cycles. It is a conjugacy class, so 1
K

is spanned by
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the characters, which will be helpful. From it generate a two-input function by:

f(a, b) = 1
K

(a�1b).

Theorem 36. D(f) � ⌦(n log log(n)) and rank(M
f

) =
�
2n�2

n�1

�
 22n.

We shall not prove the lower bound on D(f) here.

3.10.2 Computing the rank

Representation theory allows to compute the rank. Here are two useful properties. Let

⇢ be the regular matrix representation of S
n

. The matrix M = M
f

is

M =
X

�2K

⇢(�).

Since K is a conjugacy class, M is an interwiner: for all �,

⇢(�)M⇢(��1) = M
f

.

(A version of this holds for all class functions.) We are able to use Shcur’s lemma as

follows.

Let ⇢
0

, . . . , ⇢
k

be the list of irreducible representations of S
n

. Denote by 1 = d
0

, . . . , d
k

their dimensions. We know

n! = d2
0

+ . . .+ d2
k

.

We also know the multiplicity of ⇢
i

in ⇢ is d
i

as well.

We know that there is a unitary matrix U so that UMU�1 is block diagonal, where

every matrix on the diagonal is a copy of

M
i

=
X

�

1
K

(�)⇢
i

(�).

Since M is an interwiner, M
i

is also an interwiner. By Schur’s lemma, we learn that M
i

is a scalar matrix for all i. Denote

M
i

= c
i

I

for all i.

The rank of M is now well understood. Denote by 0, 1, . . . , ` the set of i so that

c
i

6= 0. Then,

rank(M) =
`X

i=0

d2
i

.



3.10. LOGRANK AND THE SYMMETRIC GROUP 51

We just need to understand for which i the matrix M
i

is nonzero. This what we shall

do next.
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3.11 Representations of the symmetric group

We have seen that there is a one-to-one correspondence between irreducible representa-

tions and characters, and between characters and conjugacy classes.

Conjugacy classes of S
n

are determined by the cycle structure of S
n

. The number of

cycle structures is exactly the number of partitions of n. That is, � = (�
1

,�
2

, . . . ,�
`

) so

that �
1

� �
2

� . . .�
`

� 1 so that |�| :=
P

i

�
i

= n. This is denoted by � ` n.

We shall describe a concrete correspondence between partitions and irreducible rep-

resentation [Sagan, James].

We start by a concrete description of the vector spaces on which G shall act. We

thus describe representation of G. We shall start with “big” representations and shall

then reduce the dimension until we get irreducible ones. The dimension reduction will

be done by dividing by certain subgroups.

Definition 37. A Ferrer diagram of shape � = (�
1

, . . . ,�
`

) is a collection of n cells with

` rows, where in row i from top there are exactly �
i

cells (aligned to left).

A (Young) tableau is a (one-to-one) filling of a diagram with the numbers 1 to n.

A standard tableau is such that the number if every row increase (to right) and in

every column increase (to bottom).

Examples for � = (3, 2, 2, 1).

A permutation � acts on a tableau t: The entry t(i, j) is replaced by �(t(i, j)) for

suitable (i, j). We may thus consider the action of S
n

on the space of complex functions

on �-tableaux. This is a representation of S
n

, but not an irreducible one.

Definition 38. Define an (row) equivalence relation on the space of �-tableaux: t
1

⌘ t
2

if there is a permutation � that fixes the rows of t
1

so that �t
1

= t
2

. An equivalence

class {t} is called a tabloid.

The number of tableaux in a �-tabloid �! := �
1

!�
2

! . . .�
`

!. The number of �-tabloids

is n!/�!.

Permutations act on tabloids as well

�{t} = {�t}

(needs to be verified). This gives a representation of S
n

on

M� := C({t
1

}, . . . , {t
k

}),

where {t
1

}, . . . is the list of �-tabloids.

Examples: M (n) ⇠= C with trivial representation, M (1

n
) ⇠= C[S

n

] with regular repre-

sentation, and M (n�1,1) ⇠= C[{1, . . . , n}] with the defining representation.
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These are still not necessarily irreducible. We shall now define the irreducible repre-

sentations of S
n

.

3.11.1 Specht modules

The Specht modules which we now define are the irreducible representations.

Definition 39. Let t be a tableau with rows R
1

, . . . , R
t

⇢ [n] and columns C
1

, . . . , C
k

⇢
[n]. Define the row stabiliser as

R
t

= S
R1 ⇥ · · ·S

Rt

Define the columns stabiliser as

C
t

= S
C1 ⇥ · · ·S

Ck
.

Example: for � = (3, 2), we have |R
t

| = 3! · 2! and |C
t

| = 2! · 2! · 1!.

Definition 40. Given t, define


t

=
X

�2Ct

sign(�)� 2 C[S
n

]

and a polytabloid as

e
t

= 
t

{t} 2 M�.

Example for � as above, where 
t

, e
t

are sums of four tabloids.

Definition 41. The Specht modules are of the form

S� = spanC{et : t a �-tableau}.

Begin by showing that they are representations of S
n

.

Lemma 42.

1. R
�t

= �R
t

��1, C
�t

= �C
t

��1. and 
�t

= �
t

��1

2. �e
t

= e
�t

.

Proof.

1. Consider R for example: ⌧ 2 R
�t

i↵ ⌧{�t} = {�t} i↵ ��1⌧�{t} = {t} i↵ ⌧ 2 �R
t

�.
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2.

e
�t

= 
�t

{�t} = �
t

��1{�t} = �
t

{t} = �e
t

.

The lemma implies that S
n

acts on S� by permuting the e
t

’s. This implies that M�

is indeed a representation.

Theorem 43. The subspace S� ⇢ M� is irreducible.

We shall not prove this right now (see below).

The set {e
t

} spans S� but it is not a basis. The following theorem describes a basis.

Theorem 44. The set {e
t

: t is a standard �-tableau} is a basis for S�.

We shall not prove the theorem right now either. The proof is very informative. It

shows e.g. that the action of G on S� can be represented by upper triangular matrices

with ±1 on the diagonal.

Examples: (1n), (n), (n, 1).

3.11.2 Back to logrank

Recall that we started this discussion by trying to compute the rank of a given matrix

(corresponding to the class of n-cycles K). We need to examine which characters have

nonzero inner product with 1
K

. This is known (perhaps we shall prove it later on):

h�S� , Ki 6= 0 , � has one turn (i.e. � = (n� j, 1j) for some j 2 {0, . . . , n� 1}).

The last step towards understanding the rank is figuring out the dimension d
�

of S� for

� = (n� j, 1j). It is exactly the number of standard tableau of this shape. That is,

d
�

=

✓
n� 1

j

◆

(which j elements appear in the single column). Overall,

rank(M) =
n�1X

j=0

✓
n� 1

j

◆
2

=
n�1X

j=0

✓
n� 1

j

◆✓
n� 1

n� 1� j

◆
=

✓
2n� 2

n� 1

◆
,

as claimed.
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3.11.3 Orders on partitions

There are two orders on partitions that are useful in understanding the Specht modules.

Definition 45 (Dominance order). Let �,�0 be partitions of n. We write � � �0 if for

all i,

�
1

+ . . .+ �
i

� �0
1

+ . . .+ �0
i

.

That is, if “� is wider than �0 on every height.” Example (4, 3) is larger than (3, 2, 12).

Sometimes a di↵erent notation is used.

Lemma 46 (Dominance). Let t, t0 be tableaux of shape �,�0. If for every i the element

in row i of t0 appear in di↵erent columns in t then �� �0.

Proof. By reordering the columns of t, going over �0 row-by-row, move the elements that

appear in first i rows in �0 so that they appear in first i rows of �.

The dominance order is partial. A linear order that extends it is (exercise)

Definition 47 (Lexicographic order). We write � � �0 if �
i

� �0
i

where i is the smallest

integer in which �
i

6= �0
i

.

3.11.4 Irreducability

Lemma 48. If u 2 M� and t is of shape � then 
t

u = c
u

e
t

for some c
u

2 C.

Proof. 1 Let t0 be of shape � as well. If there are two elements a, b in the same row of t0

and in the same column of t, then


t

{t0} = sign((a, b))
t

(a, b){t0} = �
t

{t0},

which implies


t

{t0} = 0 = 0e
t

.

Otherwise, by the dominance lemma there is ⇡ 2 C
T

so that {t0} = ⇡{t}, which implies


t

{t0} = sign(⇡)e
t

.

Hence,


t

u =
X

{t0}

↵{t0}t{t0} = e
t

X

t

0

↵{t0}c{t0}.

1There seems to be a problem with [Sagan]: “The reasoning of the dominance lemma shows that
{t0} = ⇡{t} for some ⇡ 2 Ct.”
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The following theorem of [James] shows that S� is irreducible2 over C.

Theorem 49. Let U be a submodule of M�. Then either U ⇢ S� or S�? ⇢ U .

Here the inner product is the unique one so that

h{t}, {t0}i = 1{t}={t0}.

Proof. If there is u 2 U so that c
u

6= 0 then e
t

2 U . But S� is cyclic, that is,

S� = C[S
n

] · e
t

(since every tableaux can obtained from t by reordering).

Otherwise, 
t

u = 0 for all u 2 U . The claim is that every u 2 U is in the dual of S�.
Indeed, since C

t

is a subgroup, the linear map x 7! 
t

x is unitary, which means that for

every e
t

,

hu, e
t

i = h
t

u, {t}i = 0.

The set {e
t

} spans S�.

Corollary 50. The set {S�} is a complete list of the irreducible representation of S
n

.

Proof. We just need to show that they are pairwise inequivalent (since the dimensions

sum up correctly). For this, we use the order on partitions. Assume S� is equivalent to

S�0 . This implies that there is a nonzero ✓ 2 Hom(S�,M�

0
) (a module homomorphism).

We claim that then �� �0. By symmetry, this completes the proof.

There is some t of shape � so that ✓(e
t

) 6= 0. Over C, we know that ✓ can be extended

to Hom(M�,M�

0
) by setting it to be zero on S�?. So,

0 6= ✓(e
t

) = 
t

✓({t}) =
X

i

c
i


t

{t0
i

}.

Specifically, there is {t0} so that 
t

{t0} 6= 0. By the argument of Lemma 48, there are

no a, b are in the same row of t0 that are in the same column of t, and the dominance

lemma applies.

Corollary 51.

M�

0
=

M

���

0

m
�

0
,�

S�.

The numbers m
�

0
,�

have combinatorial interpretation.

2Can actually be proved for any field.
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3.12 All groups yield expanders with log many gen-

erators

In this part we prove the Alon-Roichman theorem that states that order log |G| elements

of a group yield an expander graph (we have seen this in the exercise for abelian groups).

We follow the proof of [Landau and Russel]. The proof is similar to the simple proof

for abelian group, except that is uses a matrix version of the Cherno↵ bound proved by

[Ahlswede and Winter].

Let G be a finite group. Recall the definition of Cay(G,S) for a symmetric subset

of G. Denote by M the normalised adjacency matrix of S. In the following let S =

{s
1

, s�1

1

, . . . , s
k

, s�1

k

} be random so that each s
i

is uniform and independent. The matrix

M is symmetric and so has n = |G| real eigenvalues 1 = �
1

� �
2

� . . . � �
n

.

Let ⇢ be the regular (matrix) representation of G. So,

M =
1

2k

X

i2[k]

⇢(s
i

) + ⇢(s�1

i

).

We know that ⇢ = �
a

d
a

⇡
a

where the multiplicity d
a

of the irreducible ⇡
a

is its dimension.

Theorem 52. If k � c(b+ logD) with D =
P

a

d
a

for some constant c = c(✏) > 0 then

Pr[�
2

> ✏]  2�b.

Observe D2  |G|
P

a

d2
a

 |G|2.

Proof. Denote

M
a

=
1

k

X

i2[k]

⇡
a

(s
i

) + ⇡
a

(s�1

i

)

2
.

We know that (up to a basis change) M has the matrices M
a

on its “diagonal”.

Fix a so that ⇡
a

is not trivial. The orthogonality lemma implies

EM
a

= 0.

We would like to say thatM
a

is close to the zero matrix w.h.p. so that all of its eigenvalues

are small. This is what Ahlswede and Winter proved (which is a matrix analog of

Cherno↵ equality we used in abelian case).

Proposition 53. Let A
1

, . . . , A
k

be i.i.d. random d⇥d matrices so that3 EA
1

= A � µI

3Here A  B means that B �A is positive semidefinite (all eigenvalues are nonnegative).
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and a.s. A
1

 I. Then, for every ✏ 2 (0, 1/2],

Pr

2

41

k

X

i2[k]

A
i

62 [(1� ✏)A, (1 + ✏)A]

3

5  2de�
✏2µk

2 .

Remark 54. The proof of the proposition uses exponential moments as does the proof

of Cherno↵. A key property that is used is the Golden-Thompson inequality Tr(eA+B) 
Tr(eAeB) that holds for all Hermitian (A = A⇤) matrices A,B.

Use the proposition with

A
i

=
1

2
I +

⇡
a

(s
i

) + ⇡
a

(s�1

i

)

2
.

We may use the proposition with µ = 1/2 since ⇡
a

is unitary:

Pr

2

41

k

X

i2[k]

A
i

62 [(1� ✏)I/2, (1 + ✏)I/2]

3

5  2d
a

e�
✏2k
2  d

a

D
2�b.

When 1

k

P
i2[k] Ai

2 [(1 � ✏)I/2, (1 + ✏)I/2], we know that M
a

is in [�✏I, ✏I] and so its

eigenvalues are at most ✏ in absolute value.

The union bound over a completes the proof.
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3.13 Sums of squares

We now discuss and prove Hurwitz’s theorem. We consider the field C but the discussion

can be carried over an field with char 6= 2. We follow notes of [Conrad].

Definition 55. Define �(n) as the smallest integer k so that

X

i2[n]

x2

i

·
X

j2[n]

y2
j

=
X

`2[k]

z2
`

,

where z
`

is bilinear in x, y.

Examples: 1, 2, 4, 8. Interesting history. Loss of commutativity, associativity.

Upper bounds: obvious �(n)  n2, less obvious �(n) . n2/ log
2

(n).

Lower bounds: �(n) � n.

Connection to computational complexity: if �(n) � n1+✏ then the permanent is hard

for non commutative circuits and ncV NP 6= ncV P [Hrubes,Wigderson,Y].

Connections to division algebras.

Theorem 56 (Hurwitz). �(n) = n i↵ n 2 {1, 2, 4, 8}.

Assume �(n) = n. The first part of the proof is representing the problem by matrices.

Each z
`

is bilinear, that is,

z
`

= xA
`

z

for some matrix A
`

. The coe�cient of x
i

x
i

0y
j

y
j

0 is of form (when i 6= i0)

1
i=i

0
,j=j

0 =
X

`2[n]

A
`

(i, j)A
`

(i0, j0) + A
`

(i, j0)A
`

(i0, j).

We have an n⇥ n⇥ n tensor (A
`

(i, j)). For fixed i, define the matrix

B
i

(j, `) = A
`

(i, j).

Thus,

B
i

BT

i

= I

and for i 6= i0,

B
i

BT

i

0 +B
i

0B
i

= 0.

We can already prove that

Claim 57. n is even.

Proof. det(B
1

B
2

) = (�1)ndet(B
2

B
1

).
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Consider the group of matrices generated by B
1

, . . . , B
n

. We may assume that B
n

= I

by considering if needed {B
i

BT

n

} instead. This means that

BT

i

= �B
i

so

B2

i

= �I.

It consists of matrices of the form

±Ba1
1

Ba2
2

· · ·Ban�1
n�1

for a 2 {0, 1}n�1. Abstractly expressed this group (if it exists) asG defined by ✏, g
1

, . . . , g
n�1

satisfying g
i

g
j

= ✏g
j

g
i

if i 6= j and g2
i

= ✏ 6= 1.

Claim 58.

1. |G| = 2n.

2. [G,G] = {1, ✏}.

3. If g 62 Z(G) then the conjugacy class of g is {g, ✏g}.

4. Z(G) = {1, ✏, g
1

g
2

· · · g
n

, ✏g
1

g
2

· · · g
n

}.

Proof.

1. The claim is that ga1
1

. . . g
an�1
n�1

= 1 implies a = 0. By induction on n. (If

g
1

g
2

. . . g
n�1

= 1 then we get g
n�1

is a word in the other elements, and substi-

tuting it provides a contradiction.)

2. By definition.

3. By definition.

4. If g = ✏a0ga1
1

· · · gan�1
n�1

is in center then for all i,

✏a0✏
P

j<i ajga1
1

· · · gai+1

i

· · · gan�1
n�1

✏n�i+1✏
P

j>i ajga1
1

· · · gai+1

i

· · · gan�1
n�1

.

Thus, (J � I)a0 = 0 mod 2 where a0 2 {0, 1}[n�1] and J is the all-ones matrix.

This means that a 2 {0,~1}.
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We are ready to use representation theory. We have a n-dimensional representation

of G that we investigate.

Start by analysing G. The group G/[G,G] is abelian of size 2n�1, which means

that it has 2n�1 one-dimensional representations. These can be extended to 2n�1 one-

dimensional representation of G. The number of irreducible representation is equal to

number of conjugacy classes which is 4 + (2n � 4)/2 = 2n�1 + 2. So, there are exactly 2

irreducible representation of dimension greater than one. The dimension of these must

divide the size of G (exercise), and hence are powers of two: 2c1 , 2c2 . In addition, the

sum of squares of dimensions is equal to |G|:

22c1 + 22c2 = 2n � 2n�1 = 2n�1

which implies

2c1 = 2c2 = 2n/2�1.

We started with B
1

, . . . , B
n

, which is an n-dimensional representation of G. It remains

to observe that there are no copies of a one-dimensional representation in G, since

commutativity holds on this part. So,

2n/2�1

��n.

If n = 2rs with s odd then 2r  n  2r + 2 which implies r 2 {2, 3}.
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